IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp130-138.html
   My bibliography  Save this article

Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade

Author

Listed:
  • Sumathi, Vijayan
  • Jayapragash, R.
  • Bakshi, Abhinav
  • Kumar Akella, Praveen

Abstract

This paper reports a review of various methods of solar tracking with gains in energy due to tracking and different MPPT algorithms. The fossil fuels are non-renewable, limited and deplete. Therefore, it is imperative to find alternative sources of energy. As solar energy is available abundantly in nature, it can be considered as a best alternative to meet the energy demand. It is sustainable, renewable and scalable. Increasing the efficiency of harnessing solar energy should be one of our foremost concerns as it is a renewable source. The challenge in tapping this energy is to increase the efficiency as well as to reduce the cost of production. Therefore an attempt is made to review the various Maximum Power Point Tracking (MPPT) algorithms, different solar tracking methods and the energy gained by using these methods. Further, a single axis microcontroller based automatic tracker is implemented and tested for its performance in real time. The work focusses on the orientation of solar panel towards the direction of maximum radiation by using a stepper motor interfaced with ARM processor.

Suggested Citation

  • Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:130-138
    DOI: 10.1016/j.rser.2017.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117302162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    2. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    3. Chin, C.S. & Babu, A. & McBride, W., 2011. "Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink," Renewable Energy, Elsevier, vol. 36(11), pages 3075-3090.
    4. Bakos, George C., 2006. "Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement," Renewable Energy, Elsevier, vol. 31(15), pages 2411-2421.
    5. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    6. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    7. Sungur, Cemil, 2009. "Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1119-1125.
    8. Ibrahim, Said M.A., 1996. "The forced circulation performance of a sun tracking parabolic concentrator collector," Renewable Energy, Elsevier, vol. 9(1), pages 568-571.
    9. Ghosh, H.R. & Bhowmik, N.C. & Hussain, M., 2010. "Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka," Renewable Energy, Elsevier, vol. 35(6), pages 1292-1297.
    10. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2010. "Optical performance of inclined south-north single-axis tracked solar panels," Energy, Elsevier, vol. 35(6), pages 2511-2516.
    11. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    12. Roth, P. & Georgiev, A. & Boudinov, H., 2004. "Design and construction of a system for sun-tracking," Renewable Energy, Elsevier, vol. 29(3), pages 393-402.
    13. Oner, Yusuf & Cetin, Engin & Ozturk, Harun Kemal & Yilanci, Ahmet, 2009. "Design of a new three-degree of freedom spherical motor for photovoltaic-tracking systems," Renewable Energy, Elsevier, vol. 34(12), pages 2751-2756.
    14. Njoku, H.O., 2016. "Upper-limit solar photovoltaic power generation: Estimates for 2-axis tracking collectors in Nigeria," Energy, Elsevier, vol. 95(C), pages 504-516.
    15. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Jallal, Mohammed & Chabaa, Samira & Zeroual, Abdelouhab, 2020. "A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers," Renewable Energy, Elsevier, vol. 149(C), pages 1182-1196.
    2. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2021. "Solar Tracking System with New Hybrid Control in Energy Production Optimization from Photovoltaic Conversion for Polish Climatic Conditions," Energies, MDPI, vol. 14(10), pages 1-26, May.
    3. Jately, Vibhu & Azzopardi, Brian & Joshi, Jyoti & Venkateswaran V, Balaji & Sharma, Abhinav & Arora, Sudha, 2021. "Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    5. Mah, Angel Xin Yee & Ho, Wai Shin & Hassim, Mimi H. & Hashim, Haslenda & Ling, Gabriel Hoh Teck & Ho, Chin Siong & Muis, Zarina Ab, 2021. "Optimization of a standalone photovoltaic-based microgrid with electrical and hydrogen loads," Energy, Elsevier, vol. 235(C).
    6. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    7. Xuan Cuong Ngo & Thi Hong Nguyen & Nhu Y Do & Duc Minh Nguyen & Dai-Viet N. Vo & Su Shiung Lam & Doyeon Heo & Mohammadreza Shokouhimehr & Van-Huy Nguyen & Rajender S. Varma & Soo Young Kim & Quyet Van, 2020. "Grid-Connected Photovoltaic Systems with Single-Axis Sun Tracker: Case Study for Central Vietnam," Energies, MDPI, vol. 13(6), pages 1-14, March.
    8. Muñoz-Cerón, E. & Lomas, J.C. & Aguilera, J. & de la Casa, J., 2018. "Influence of Operation and Maintenance expenditures in the feasibility of photovoltaic projects: The case of a tracking pv plant in Spain," Energy Policy, Elsevier, vol. 121(C), pages 506-518.
    9. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    10. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    11. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    12. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    13. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    14. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    2. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    3. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    4. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    5. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    6. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    7. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    8. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    9. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    10. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    11. Şenpinar, Ahmet & Cebeci, Mehmet, 2012. "Evaluation of power output for fixed and two-axis tracking PVarrays," Applied Energy, Elsevier, vol. 92(C), pages 677-685.
    12. Seme, Sebastijan & Srpčič, Gregor & Kavšek, Domen & Božičnik, Stane & Letnik, Tomislav & Praunseis, Zdravko & Štumberger, Bojan & Hadžiselimović, Miralem, 2017. "Dual-axis photovoltaic tracking system – Design and experimental investigation," Energy, Elsevier, vol. 139(C), pages 1267-1274.
    13. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    14. Hammad, Bashar & Al-Sardeah, Ali & Al-Abed, Mohammad & Nijmeh, Salem & Al-Ghandoor, Ahmed, 2017. "Performance and economic comparison of fixed and tracking photovoltaic systems in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 827-839.
    15. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    16. Chiemeka Onyeka Okoye & Serkan Abbasoglu, 2013. "Empirical Investigation of Fixed and Dual Axis Sun Tracking Photovoltaic System Installations in Turkish Republic of Northern Cyprus," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 3(5), pages 440-453, May.
    17. Mirzaei, Mohsen & Mohiabadi, Mostafa Zamani, 2018. "Comparative analysis of energy yield of different tracking modes of PV systems in semiarid climate conditions: The case of Iran," Renewable Energy, Elsevier, vol. 119(C), pages 400-409.
    18. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    19. Ahmad, Salsabila & Shafie, Suhaidi & Ab Kadir, Mohd Zainal Abidin & Ahmad, Noor Syafawati, 2013. "On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 635-642.
    20. Yilmaz, Saban & Riza Ozcalik, Hasan & Dogmus, Osman & Dincer, Furkan & Akgol, Oguzhan & Karaaslan, Muharrem, 2015. "Design of two axes sun tracking controller with analytically solar radiation calculations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 997-1005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:130-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.