IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i16p4224-d399417.html
   My bibliography  Save this article

Solar Photovoltaic Tracking Systems for Electricity Generation: A Review

Author

Listed:
  • Sebastijan Seme

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia)

  • Bojan Štumberger

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia)

  • Miralem Hadžiselimović

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia
    Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia)

  • Klemen Sredenšek

    (Faculty of Energy Technology, University of Maribor, Hočevarjev trg 1, 8270 Krško, Slovenia)

Abstract

This paper presents a thorough review of state-of-the-art research and literature in the field of photovoltaic tracking systems for the production of electrical energy. A review of the literature is performed mainly for the field of solar photovoltaic tracking systems, which gives this paper the necessary foundation. Solar systems can be roughly divided into three fields: the generation of thermal energy (solar collectors), the generation of electrical energy (photovoltaic systems), and the generation of electrical energy/thermal energy (hybrid systems). The development of photovoltaic systems began in the mid-19th century, followed shortly by research in the field of tracking systems. With the development of tracking systems, different types of tracking systems, drives, designs, and tracking strategies were also defined. This paper presents a comprehensive overview of photovoltaic tracking systems, as well as the latest studies that have been done in recent years. The review will be supplemented with a factual presentation of the tracking systems used at the Institute of Energy Technology of the University of Maribor.

Suggested Citation

  • Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4224-:d:399417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/16/4224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/16/4224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    2. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    3. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.
    4. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
    5. Li, Zhimin & Liu, Xinyue & Tang, Runsheng, 2011. "Optical performance of vertical single-axis tracked solar panels," Renewable Energy, Elsevier, vol. 36(1), pages 64-68.
    6. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    7. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    8. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    9. Sidek, M.H.M. & Azis, N. & Hasan, W.Z.W. & Ab Kadir, M.Z.A. & Shafie, S. & Radzi, M.A.M., 2017. "Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control," Energy, Elsevier, vol. 124(C), pages 160-170.
    10. Bakos, George C., 2006. "Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement," Renewable Energy, Elsevier, vol. 31(15), pages 2411-2421.
    11. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    12. Yuhang Gao & Chao Gao & Haizhen Xian & Xiaoze Du, 2018. "Thermal Properties of Solar Collector Comprising Oscillating Heat Pipe in a Flat-Plate Structure and Water Heating System in Low-Temperature Conditions," Energies, MDPI, vol. 11(10), pages 1-12, September.
    13. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    14. Kim, Hyeongmin & Kim, Jinhyun & Cho, Honghyun, 2017. "Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid," Energy, Elsevier, vol. 118(C), pages 1304-1312.
    15. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    16. Sungur, Cemil, 2009. "Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1119-1125.
    17. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    18. Siecker, J. & Kusakana, K. & Numbi, B.P., 2017. "A review of solar photovoltaic systems cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 192-203.
    19. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    20. Zhang, Junbin & Yin, Zhuojun & Jin, Peng, 2019. "Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm," Energy, Elsevier, vol. 182(C), pages 585-593.
    21. Arbab, H. & Jazi, B. & Rezagholizadeh, M., 2009. "A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow," Renewable Energy, Elsevier, vol. 34(4), pages 1114-1118.
    22. Garrido, Ruben & Díaz, Arturo, 2016. "Cascade closed-loop control of solar trackers applied to HCPV systems," Renewable Energy, Elsevier, vol. 97(C), pages 689-696.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    2. Ibrahim Khalil Almadani & Ibrahim Sufian Osman & Nasir Ghazi Hariri, 2022. "In-Depth Assessment and Optimized Actuation Method of a Novel Solar-Driven Thermomechanical Actuator via Shape Memory Alloy," Energies, MDPI, vol. 15(10), pages 1-23, May.
    3. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    4. Khaled Obaideen & Abdul Ghani Olabi & Yaser Al Swailmeen & Nabila Shehata & Mohammad Ali Abdelkareem & Abdul Hai Alami & Cristina Rodriguez & Enas Taha Sayed, 2023. "Solar Energy: Applications, Trends Analysis, Bibliometric Analysis and Research Contribution to Sustainable Development Goals (SDGs)," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    5. Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
    6. Osama A. Marzouk, 2021. "Lookup Tables for Power Generation Performance of Photovoltaic Systems Covering 40 Geographic Locations (Wilayats) in the Sultanate of Oman, with and without Solar Tracking, and General Perspectives a," Sustainability, MDPI, vol. 13(23), pages 1-23, November.
    7. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    8. Manoel Henriques de Sá Campos & Chigueru Tiba, 2021. "npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection," Energies, MDPI, vol. 14(4), pages 1-13, February.
    9. Filip Žemla & Ján Cigánek & Danica Rosinová & Erik Kučera & Oto Haffner, 2023. "Complex Positioning System for the Control and Visualization of Photovoltaic Systems," Energies, MDPI, vol. 16(10), pages 1-31, May.
    10. Cătălin Alexandru, 2023. "PV Tracking Systems," Energies, MDPI, vol. 16(6), pages 1-3, March.
    11. Mohammed W. Baidas & Rola W. Hasaneya & Rashad M. Kamel & Sultan Sh. Alanzi, 2021. "Solar-Powered Cellular Base Stations in Kuwait: A Case Study," Energies, MDPI, vol. 14(22), pages 1-26, November.
    12. Rosario Carbone & Cosimo Borrello, 2023. "A Building-Integrated Bifacial and Transparent PV Generator Operated by an “Under-Glass” Single Axis Solar Tracker," Energies, MDPI, vol. 16(17), pages 1-29, September.
    13. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    14. Jesús Polo, 2022. "Advances and Challenges in Solar PV Systems’ Performance," Energies, MDPI, vol. 15(16), pages 1-2, August.
    15. Duberney Murillo-Yarce & José Alarcón-Alarcón & Marco Rivera & Carlos Restrepo & Javier Muñoz & Carlos Baier & Patrick Wheeler, 2020. "A Review of Control Techniques in Photovoltaic Systems," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    16. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    17. Cătălin Alexandru, 2024. "Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-33, March.
    18. Nuttee Thungsuk & Thaweesak Tanaram & Arckarakit Chaithanakulwat & Teerawut Savangboon & Apidat Songruk & Narong Mungkung & Theerapong Maneepen & Somchai Arunrungrusmi & Wittawat Poonthong & Nat Kasay, 2023. "Performance Analysis of Solar Tracking Systems by Five-Position Angles with a Single Axis and Dual Axis," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    2. Cătălin Alexandru, 2021. "Optimization of the Bi-Axial Tracking System for a Photovoltaic Platform," Energies, MDPI, vol. 14(3), pages 1-30, January.
    3. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    4. Hafez, A.Z. & Yousef, A.M. & Harag, N.M., 2018. "Solar tracking systems: Technologies and trackers drive types – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 754-782.
    5. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    6. Zhu, Yongqiang & Liu, Jiahao & Yang, Xiaohua, 2020. "Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection," Applied Energy, Elsevier, vol. 264(C).
    7. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    8. Shabani, Masoume & Mahmoudimehr, Javad, 2018. "Techno-economic role of PV tracking technology in a hybrid PV-hydroelectric standalone power system," Applied Energy, Elsevier, vol. 212(C), pages 84-108.
    9. Talavera, D.L. & Muñoz-Cerón, Emilio & Ferrer-Rodríguez, J.P. & Pérez-Higueras, Pedro J., 2019. "Assessment of cost-competitiveness and profitability of fixed and tracking photovoltaic systems: The case of five specific sites," Renewable Energy, Elsevier, vol. 134(C), pages 902-913.
    10. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    11. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    12. Yao, Yingxue & Hu, Yeguang & Gao, Shengdong & Yang, Gang & Du, Jinguang, 2014. "A multipurpose dual-axis solar tracker with two tracking strategies," Renewable Energy, Elsevier, vol. 72(C), pages 88-98.
    13. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    14. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    15. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    16. Shitao Wang & Yi Shen & Junbing Zhou & Caixia Li & Lijun Ma, 2022. "Efficiency Enhancement of Tilted Bifacial Photovoltaic Modules with Horizontal Single-Axis Tracker—The Bifacial Companion Method," Energies, MDPI, vol. 15(4), pages 1-22, February.
    17. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    18. Hua, Zhengcao & Ma, Chao & Lian, Jijian & Pang, Xiulan & Yang, Weichao, 2019. "Optimal capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand," Applied Energy, Elsevier, vol. 238(C), pages 721-733.
    19. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    20. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4224-:d:399417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.