IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp12-24.html
   My bibliography  Save this article

Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production

Author

Listed:
  • Bala, Anju
  • Singh, Bijender

Abstract

Saccharum biomasses (Saccharum munja and sugarcane bagasse) were subjected to different physical, chemical and biological pretreatment methods. Physical pretreatment of lignocellulosic biomasses was carried out by using steam treatment and microwave. Chemicals pretreament of lignocellulosic biomasses were optimized by using different chemicals like alkalies and acids. Among all chemicals, ammonia treatment significantly removed lignin (approx. 77%) and removed high amount of phenolic compounds and enhanced saccharification of Saccharum munja and sugarcane bagasse. Laccase pretreatment significantly removed lignin and enhanced the reducing sugar production by 2-fold corresponding to approx. 60% saccharification of pretreated biomass as compared to other methods. Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) showed the removal of lignin due to pretreatments. Bio-ethanol production carried out using hydrolysate of both substrates by Saccharomyces cerevisiae and Pichia stipitis at 30 °C and 150 rpm after 72 h produced high amount of ethanol (25.06 g/L and 24.56 g/L for S. munja and sugarcane bagasse, respectively). Enzymatic hydrolysate fermented by the co-culture of S. cerevisiae and P. stipitis produced 30.78 g/L and 31.56 g/L of bioethanol from S. munja and sugarcane bagasse hydrolysate, respectively. Results indicated enhanced bioethanol production by co-culturing of pentose and hexose fermenting yeasts.

Suggested Citation

  • Bala, Anju & Singh, Bijender, 2019. "Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production," Renewable Energy, Elsevier, vol. 130(C), pages 12-24.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:12-24
    DOI: 10.1016/j.renene.2018.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereira, Sandra C. & Maehara, Larissa & Machado, Cristina M.M. & Farinas, Cristiane S., 2016. "Physical–chemical–morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques," Renewable Energy, Elsevier, vol. 87(P1), pages 607-617.
    2. Thomas, Leya & Parameswaran, Binod & Pandey, Ashok, 2016. "Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 9-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Junjun & Jiao, Ningxin & Cheng, Jinlan & Zhang, Han & Xu, Guangliu & Xu, Yong & Zhu, J.Y., 2023. "Integrated process for the co-production of bioethanol, furfural, and lignin nanoparticles from birch wood via acid hydrotropic fractionation," Renewable Energy, Elsevier, vol. 204(C), pages 176-184.
    2. Chen, Zhengyu & Wang, Huan & Wei, Weiqi & Yuan, Zhaoyang, 2021. "Enhancing bagasse enzymatic hydrolysis through combination of ball-milling and LiCl/DMSO dissolution and regeneration," Renewable Energy, Elsevier, vol. 171(C), pages 994-1001.
    3. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    4. Avchar, Rameshwar & Lanjekar, Vikram & Kshirsagar, Pranav & Dhakephalkar, Prashant K. & Dagar, Sumit Singh & Baghela, Abhishek, 2021. "Buffalo rumen harbours diverse thermotolerant yeasts capable of producing second-generation bioethanol from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 173(C), pages 795-807.
    5. Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
    6. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    7. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.
    8. Farias, Josiane Pinheiro & Okeke, Benedict C. & Ávila, Fernanda Dias De & Demarco, Carolina Faccio & Silva, Márcio Santos & Camargo, Flávio Anastácio de Oliveira & Menezes Bento, Fátima & Pieniz, Simo, 2023. "Biotechnology process for microbial lipid synthesis from enzymatic hydrolysate of pre-treated sugarcane bagasse for potential bio-oil production," Renewable Energy, Elsevier, vol. 205(C), pages 174-184.
    9. Bala, Anju & Singh, Bijender, 2019. "Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels," Renewable Energy, Elsevier, vol. 136(C), pages 1231-1244.
    10. Poolakkalody, Najya Jabeen & Ramesh, Kaviraj & Palliprath, Suchithra & Nittoor, Shima Namath & Santiago, Rogelio & Kabekkodu, Shama Prasada & Manisseri, Chithra, 2023. "Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield," Renewable Energy, Elsevier, vol. 209(C), pages 420-430.
    11. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    2. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    3. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    4. Noraziah Abu Yazid & Raquel Barrena & Dimitrios Komilis & Antoni Sánchez, 2017. "Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review," Sustainability, MDPI, vol. 9(2), pages 1-28, February.
    5. da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & de Oliveira Júnior, Sérgio Dantas & de Araújo Padilha, Carlos Eduardo & de Sousa Junior, Francisco Caninde & de Macedo, 2018. "Pretreatments of Carnauba (Copernicia prunifera) straw residue for production of cellulolytic enzymes by Trichorderma reesei CCT-2768 by solid state fermentation," Renewable Energy, Elsevier, vol. 116(PA), pages 299-308.
    6. da Rosa-Garzon, Nathália Gonsales & Laure, Hélen Julie & Rosa, José César & Cabral, Hamilton, 2019. "Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome," Renewable Energy, Elsevier, vol. 133(C), pages 941-950.
    7. Bañuelos, Jennifer A. & Velázquez-Hernández, I. & Guerra-Balcázar, M. & Arjona, N., 2018. "Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source," Renewable Energy, Elsevier, vol. 123(C), pages 125-134.
    8. Granados, D.A. & Ruiz, R.A. & Vega, L.Y. & Chejne, F., 2017. "Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process," Energy, Elsevier, vol. 139(C), pages 818-827.
    9. Bala, Anju & Singh, Bijender, 2019. "Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels," Renewable Energy, Elsevier, vol. 136(C), pages 1231-1244.
    10. Nishu, & Li, Chong & Chai, Meiyun & Rahman, Md. Maksudur & Li, Yingkai & Sarker, Manobendro & Liu, Ronghou, 2021. "Performance of alkali and Ni-modified ZSM-5 during catalytic pyrolysis of extracted hemicellulose from rice straw for the production of aromatic hydrocarbons," Renewable Energy, Elsevier, vol. 175(C), pages 936-951.
    11. Yakaboylu, Gunes A. & Jiang, Changle & Yumak, Tugrul & Zondlo, John W. & Wang, Jingxin & Sabolsky, Edward M., 2021. "Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors," Renewable Energy, Elsevier, vol. 163(C), pages 276-287.
    12. Mihajlovski, Katarina & Rajilić-Stojanović, Mirjana & Dimitrijević-Branković, Suzana, 2020. "Enzymatic hydrolysis of waste bread by newly isolated Hymenobacter sp. CKS3: Statistical optimization and bioethanol production," Renewable Energy, Elsevier, vol. 152(C), pages 627-633.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:12-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.