IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp941-950.html
   My bibliography  Save this article

Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome

Author

Listed:
  • da Rosa-Garzon, Nathália Gonsales
  • Laure, Hélen Julie
  • Rosa, José César
  • Cabral, Hamilton

Abstract

Bioethanol production by using agricultural residues is an ecofriendly and renewable approach for energy production. Fusarium oxysporum URM 7401 produces an enzymatic arsenal that can be useful for biomass degradation and the cellulose saccharification. Thus, we aimed to identify in F. oxysporum URM 7401, cultured with 1% casein or feather meal in a submerged bioprocess, the intracellular protein profile in 2D gels, as well as evaluate the secreted enzymes in crude extracts and their capacity to degrade agricultural residues. Peptidase and xylanase production was higher with the use of feather meal than casein, whereas lipase production was increased upon culture with casein. Pectinase, β-glucosidase, filter paper-digesting activity, amylase and invertase was similar in both cultures. Intracellular analysis identified proteins involved in carbohydrate and protein metabolisms, energy generation and, notably, transaldolase a key enzyme for enhancing bioethanol production. The extract from the casein culture released reducing sugars from agricultural residues 2-fold more efficiently than did the extract from the feather-meal culture. Conversely, highest proteolytic activity in the feather-meal crude extract can account for the impaired sugar release measured. Our results emphasize the potential of using F. oxysporum URM 7401 for consolidated bioprocesses, due to the modulation of the cell metabolic machinery.

Suggested Citation

  • da Rosa-Garzon, Nathália Gonsales & Laure, Hélen Julie & Rosa, José César & Cabral, Hamilton, 2019. "Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: Evidence from analysis of secreted enzymes and intracellular proteome," Renewable Energy, Elsevier, vol. 133(C), pages 941-950.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:941-950
    DOI: 10.1016/j.renene.2018.10.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Thomas, Leya & Parameswaran, Binod & Pandey, Ashok, 2016. "Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 9-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    3. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    7. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    9. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    10. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    11. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    12. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    13. Ahmad Abbaszadeh-Mayvan & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Intensification of Continuous Biodiesel Production from Waste Cooking Oils Using Shockwave Power Reactor: Process Evaluation and Optimization through Response Surface Methodology (RSM)," Energies, MDPI, vol. 11(10), pages 1-13, October.
    14. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Gorji, Tahereh B. & Ranjbar, A.A., 2017. "Thermal and exergy optimization of a nanofluid-based direct absorption solar collector," Renewable Energy, Elsevier, vol. 106(C), pages 274-287.
    16. Trung-Thanh Nguyen & Mozammel Mia, 2020. "Modeling and Evaluation of Energy Efficiency of New Hybrid Turning-Burnishing Process in Terms of Surface Properties," Energies, MDPI, vol. 13(18), pages 1-20, September.
    17. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    18. Masooma Munir & Muhammad Nadeem & Barkat Ali & Muhammad Sultan & Rabia Kanwal & Huda Abdalrahman Al-Jumayi & Eman Hassan Ahmed Algarni & Maged B. Alnofeai & Samy F. Mahmoud, 2022. "Investigating the Impact of Ultrasound, Microwave, and High-Pressure Processing of Milk on the Volatile Compounds and Sensory Properties of Cheddar Cheese," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
    19. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    20. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:941-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.