IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp987-997.html
   My bibliography  Save this article

Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification

Author

Listed:
  • Matei, Jéssica C.
  • Soares, Marlene
  • Bonato, Aline Cristine H.
  • de Freitas, Maria Paula A.
  • Helm, Cristiane V.
  • Maroldi, Wédisley V.
  • Magalhães, Washington L.E.
  • Haminiuk, Charles W.I.
  • Maciel, Giselle M.

Abstract

Sugarcane bagasse (SB) and rice husks (RH) are agroindustrial byproducts which can be hydrolyzed to release sugars for the production of valuable bioproducts. However, the exposure of their carbohydrates to the action of hydrolytic enzymes depends on the removal/modification of lignin by a pretreatment. Here we report a biological strategy for pretreatment of SB and RH using a crude enzyme extract rich in laccases to delignification and improvement of reducing sugars yield after saccharification. Enzyme extracts were produced by different species of fungi cultured in a medium with agroindustrial byproducts and other components in static semi-solid condition. The highest yields of laccase production were obtained by Trametes villosa (9467.8 U/L). SB and RH were pretreated with this crude enzyme extract in various conditions and the process optimization resulted in the choice of proper mediators for laccases oxidative action and an increase of more than 10-fold in reducing sugars concentration in the saccharified samples (291 mg/g of sugars were obtained from SB and 193 mg/g from RH) when compared to the control (non pre-treated). Results of MIR-ATR suggested that RH were less susceptible to enzymatic pretreatment than SB and partial removal/modification of lignin was sufficient to improve saccharification.

Suggested Citation

  • Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:987-997
    DOI: 10.1016/j.renene.2020.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    2. Jin, Wenxiang & Chen, Ling & Hu, Meng & Sun, Dan & Li, Ao & Li, Ying & Hu, Zhen & Zhou, Shiguang & Tu, Yuanyuan & Xia, Tao & Wang, Yanting & Xie, Guosheng & Li, Yanbin & Bai, Baowei & Peng, Liangcai, 2016. "Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed," Applied Energy, Elsevier, vol. 175(C), pages 82-90.
    3. Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
    4. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    5. Bala, Anju & Singh, Bijender, 2019. "Development of an environmental-benign process for efficient pretreatment and saccharification of Saccharum biomasses for bioethanol production," Renewable Energy, Elsevier, vol. 130(C), pages 12-24.
    6. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Peng & Su, Yan & Tang, Wei & Huang, Caoxing & Lai, Chenhuan & Ling, Zhe & Yong, Qiang, 2022. "Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors," Renewable Energy, Elsevier, vol. 199(C), pages 1461-1468.
    2. Chen, Zhengyu & Wang, Huan & Wei, Weiqi & Yuan, Zhaoyang, 2021. "Enhancing bagasse enzymatic hydrolysis through combination of ball-milling and LiCl/DMSO dissolution and regeneration," Renewable Energy, Elsevier, vol. 171(C), pages 994-1001.
    3. Liu, Yao & Zheng, Xiaojie & Tao, Shunhui & Hu, Lei & Zhang, Xiaodong & Lin, Xiaoqing, 2021. "Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation," Renewable Energy, Elsevier, vol. 177(C), pages 259-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. Likang Deng & Jun Li, 2021. "Thread Rolling: An Efficient Mechanical Pretreatment for Corn Stover Saccharification," Energies, MDPI, vol. 14(3), pages 1-9, January.
    3. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    4. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    5. Ulaganathan, Kandasamy & Goud, Sravanthi & Reddy, Madhavi & Kayalvili, Ulaganathan, 2017. "Genome engineering for breaking barriers in lignocellulosic bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1080-1107.
    6. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    7. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    8. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    9. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    10. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    11. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    12. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    13. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    14. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    15. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    16. Pinto, T. & Flores-Alsina, X. & Gernaey, K.V. & Junicke, H., 2021. "Alone or together? A review on pure and mixed microbial cultures for butanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    17. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
    18. Pizzi, A. & Toscano, G. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Renzi, A. & Mancini, M., 2018. "Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy," Energy, Elsevier, vol. 147(C), pages 51-58.
    19. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    20. Gigel Paraschiv & Georgiana Moiceanu & Gheorghe Voicu & Mihai Chitoiu & Petru Cardei & Mirela Nicoleta Dinca & Paula Tudor, 2021. "Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling," Sustainability, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:987-997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.