IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v128y2018ipap362-374.html
   My bibliography  Save this article

A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods

Author

Listed:
  • Nedaei, Mojtaba
  • Assareh, Ehsanolah
  • Walsh, Philip R.

Abstract

In the current analysis, an attempt has been made, for the first time in its kind, to perform a comprehensive evaluation of wind resource through employing various statistical approaches. An extensive analysis of 46 probability methods has suggested the Wakeby outperforming other distribution functions in terms of compatibility among the actual and predicted wind data. Another challenging phase of the research was performed with a motivation to study the vertical wind shear profile based on two extrapolation methods, power and logarithmic laws. The estimated wind speed at the 80 m height was ranged from 5.58 to 12.24 m/s with an annual mean wind speed of 7.72 m/s. Through using the power law, the Gumbel distribution function, and Harris algorithm, the probability analysis for extreme wind events at higher altitudes was also performed, which led to the 50-year extreme wind speed being 44.262 m/s indicating a low risk of potential damages from the wind storms in the studied area. Extensive analysis of the wind resource characteristics such as seasonal wind speed profiles, the intensity and direction of regional wind turbulence, together with graphical distribution of wind resource highlighted a strong potential of using wind for power production in the investigated region.

Suggested Citation

  • Nedaei, Mojtaba & Assareh, Ehsanolah & Walsh, Philip R., 2018. "A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods," Renewable Energy, Elsevier, vol. 128(PA), pages 362-374.
  • Handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:362-374
    DOI: 10.1016/j.renene.2018.05.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karthikeya, B.R. & Negi, Prabal S. & Srikanth, N., 2016. "Wind resource assessment for urban renewable energy application in Singapore," Renewable Energy, Elsevier, vol. 87(P1), pages 403-414.
    2. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    3. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    4. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    5. Wu, Jie & Wang, Jianzhou & Chi, Dezhong, 2013. "Wind energy potential assessment for the site of Inner Mongolia in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 215-228.
    6. Lydia, M. & Suresh Kumar, S. & Immanuel Selvakumar, A. & Edwin Prem Kumar, G., 2015. "Wind resource estimation using wind speed and power curve models," Renewable Energy, Elsevier, vol. 83(C), pages 425-434.
    7. Scerri, E. & Farrugia, R., 1996. "Wind data evaluation in the Maltese Islands," Renewable Energy, Elsevier, vol. 7(1), pages 109-114.
    8. Vanvyve, Emilie & Delle Monache, Luca & Monaghan, Andrew J. & Pinto, James O., 2015. "Wind resource estimates with an analog ensemble approach," Renewable Energy, Elsevier, vol. 74(C), pages 761-773.
    9. Gualtieri, Giovanni, 2016. "Atmospheric stability varying wind shear coefficients to improve wind resource extrapolation: A temporal analysis," Renewable Energy, Elsevier, vol. 87(P1), pages 376-390.
    10. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    11. Drew, D.R. & Barlow, J.F. & Cockerill, T.T. & Vahdati, M.M., 2015. "The importance of accurate wind resource assessment for evaluating the economic viability of small wind turbines," Renewable Energy, Elsevier, vol. 77(C), pages 493-500.
    12. Solyali, Davut & Altunç, Mustafa & Tolun, Süleyman & Aslan, Zafer, 2016. "Wind resource assessment of Northern Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 180-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Ji-Young & Oh, Ki-Yong & Kim, Min-Suek & Kim, Kwang-Yul, 2019. "Evaluation and characterization of offshore wind resources with long-term met mast data corrected by wind lidar," Renewable Energy, Elsevier, vol. 144(C), pages 41-55.
    2. Yun-Tao Shi & Yuan Zhang & Xiang Xiang & Li Wang & Zhen-Wu Lei & De-Hui Sun, 2018. "Stochastic Hybrid Estimator Based Fault Detection and Isolation for Wind Energy Conversion Systems with Unknown Fault Inputs," Energies, MDPI, vol. 11(9), pages 1-22, August.
    3. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    4. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    2. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    3. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    4. Bahamonde, Manuel Ignacio & Litrán, Salvador P., 2019. "Study of the energy production of a wind turbine in the open sea considering the continuous variations of the atmospheric stability and the sea surface roughness," Renewable Energy, Elsevier, vol. 135(C), pages 163-175.
    5. Herrero-Novoa, Cristina & Pérez, Isidro A. & Sánchez, M. Luisa & García, Ma Ángeles & Pardo, Nuria & Fernández-Duque, Beatriz, 2017. "Wind speed description and power density in northern Spain," Energy, Elsevier, vol. 138(C), pages 967-976.
    6. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    8. Li, Chong & Liu, Youying & Li, Gang & Li, Jianyan & Zhu, Dasheng & Jia, Wenhua & Li, Guo & Zhi, Youran & Zhai, Xinyu, 2016. "Evaluation of wind energy resource and wind turbine characteristics at two locations in China," Technology in Society, Elsevier, vol. 47(C), pages 121-128.
    9. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2017. "Temporally-explicit and spatially-resolved global onshore wind energy potentials," Energy, Elsevier, vol. 131(C), pages 207-217.
    10. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    11. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    12. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    13. Dong, Zuo & Wang, Xianjia & Zhu, Runzhou & Dong, Xuan & Ai, Xueshan, 2022. "Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region, China," Applied Energy, Elsevier, vol. 320(C).
    14. Li, Jiale & Wang, Xuefei & Yu, Xiong (Bill), 2018. "Use of spatio-temporal calibrated wind shear model to improve accuracy of wind resource assessment," Applied Energy, Elsevier, vol. 213(C), pages 469-485.
    15. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    16. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    17. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    18. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    19. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    20. Galina Chebotareva, 2018. "Methods for the Evaluation of the Competitiveness of Energy Companies," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:128:y:2018:i:pa:p:362-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.