IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1894-d526272.html
   My bibliography  Save this article

Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning

Author

Listed:
  • Xiaosheng Peng

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Kai Cheng

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jianxun Lang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Zuowei Zhang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Tao Cai

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shanxu Duan

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Wind power prediction (WPP) of wind farm clusters is important to the safe operation and economic dispatch of the power system, but it faces two challenges: (1) The dimensions of the input parameters for WPP of wind farm clusters are very high so that the input parameters contain irrelevant or redundant features; (2) it is difficult to build a holistic WPP model with high-dimensional input parameters for wind farm clusters. To overcome these challenges, a novel short-term WPP model for wind farm clusters, based on sequential floating forward selection (SFFS) feature selection and bidirectional long short-term memory (BLSTM) deep learning, is proposed in this paper. First, more than 300,000 input features of the wind farm cluster are constructed. Second, the SFFS method is applied to sort the high-dimensional features and analyze the rule that the forecasting accuracy changes with the number of features to obtain the optimal number of features and feature sets. Finally, based on the results of feature selection, BLSTM is applied to build a WPP model for wind farm clusters with a combination of feature selection and deep learning. This case study shows that (1) SFFS is an effective method for selecting the core features for WPP of wind farm clusters; (2) BLSTM shows not only higher WPP accuracy than long short-term memory and backpropagation neural network but also outstanding performance in terms of reducing the phase errors of WPP.

Suggested Citation

  • Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1894-:d:526272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengdong Li & Zixiang Ding & Jianqiang Yi & Yisheng Lv & Guiqing Zhang, 2018. "Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.
    3. Llorenç Burgas & Joan Colomer & Joaquim Melendez & Francisco Ignacio Gamero & Sergio Herraiz, 2021. "Integrated Unfold-PCA Monitoring Application for Smart Buildings: An AHU Application Example," Energies, MDPI, vol. 14(1), pages 1-15, January.
    4. Danqi Li & Fei Mei & Chenyu Zhang & Haoyuan Sha & Jianyong Zheng, 2019. "Self-Supervised Voltage Sag Source Identification Method Based on CNN," Energies, MDPI, vol. 12(6), pages 1-14, March.
    5. Drew, Daniel R. & Cannon, Dirk J. & Barlow, Janet F. & Coker, Phil J. & Frame, Thomas H.A., 2017. "The importance of forecasting regional wind power ramping: A case study for the UK," Renewable Energy, Elsevier, vol. 114(PB), pages 1201-1208.
    6. Nedaei, Mojtaba & Assareh, Ehsanolah & Walsh, Philip R., 2018. "A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods," Renewable Energy, Elsevier, vol. 128(PA), pages 362-374.
    7. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    8. Imre Delgado & Muhammad Fahim, 2020. "Wind Turbine Data Analysis and LSTM-Based Prediction in SCADA System," Energies, MDPI, vol. 14(1), pages 1-21, December.
    9. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    10. Bayat, A. & Bagheri, A., 2019. "Optimal active and reactive power allocation in distribution networks using a novel heuristic approach," Applied Energy, Elsevier, vol. 233, pages 71-85.
    11. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    12. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    13. Peng Liu & Peijun Zheng & Ziyu Chen, 2019. "Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 12(12), pages 1-15, June.
    14. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    15. Songkai Liu & Ruoyuan Shi & Yuehua Huang & Xin Li & Zhenhua Li & Lingyun Wang & Dan Mao & Lihuang Liu & Siyang Liao & Menglin Zhang & Guanghui Yan & Lian Liu, 2021. "A Data-Driven and Data-Based Framework for Online Voltage Stability Assessment Using Partial Mutual Information and Iterated Random Forest," Energies, MDPI, vol. 14(3), pages 1-16, January.
    16. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    17. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    18. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    19. Hossein Iranmanesh & Majid Abdollahzade & Arash Miranian, 2011. "Mid-Term Energy Demand Forecasting by Hybrid Neuro-Fuzzy Models," Energies, MDPI, vol. 5(1), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wang & Tiancheng Wang & Mao Yang & Chao Han & Dawei Huang & Dake Gu, 2023. "Ultra-Short-Term Prediction Method of Wind Power for Massive Wind Power Clusters Based on Feature Mining of Spatiotemporal Correlation," Energies, MDPI, vol. 16(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    2. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    3. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    4. Mohammed Issa Shahateet & Ghani Albaali & Abdul Ghafoor Saidi, 2021. "Energy and Environmental Analysis of Solar Air Cooling with 2-Stages Adsorption Chiller in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 16-26.
    5. Zhihua Lin & Zhitao Zuo & Wenbin Guo & Jianting Sun & Qi Liang & Haisheng Chen, 2021. "Experimental Study on Effects of Adjustable Vaned Diffusers on Impeller Backside Cavity of Centrifugal Compressor in CAES," Energies, MDPI, vol. 14(19), pages 1-20, September.
    6. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    7. Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
    8. Wei, Nan & Yin, Lihua & Li, Chao & Liu, Jinyuan & Li, Changjun & Huang, Yuanyuan & Zeng, Fanhua, 2022. "Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance," Energy, Elsevier, vol. 238(PC).
    9. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    10. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
    11. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    12. Li, Yaowang & Miao, Shihong & Luo, Xing & Yin, Binxin & Han, Ji & Wang, Jihong, 2020. "Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid," Applied Energy, Elsevier, vol. 261(C).
    13. Youssef Benchaabane & Rosa Elvira Silva & Hussein Ibrahim & Adrian Ilinca & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(21), pages 1-23, October.
    14. Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
    15. Mingping Liu & Xihao Sun & Qingnian Wang & Suhui Deng, 2022. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model," Energies, MDPI, vol. 15(19), pages 1-22, September.
    16. Jiang, Huaiguang & Zhang, Yingchen & Chen, Yuche & Zhao, Changhong & Tan, Jin, 2018. "Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach," Applied Energy, Elsevier, vol. 229(C), pages 756-766.
    17. Liu, Zhan & Liu, Zihui & Xin, Xuan & Yang, Xiaohu, 2020. "Proposal and assessment of a novel carbon dioxide energy storage system with electrical thermal storage and ejector condensing cycle: Energy and exergy analysis," Applied Energy, Elsevier, vol. 269(C).
    18. Du, Ruxue & He, Yang & Chen, Haisheng & Xu, Yujie & Li, Wen & Deng, Jianqiang, 2022. "Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis," Energy, Elsevier, vol. 238(PA).
    19. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
    20. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1894-:d:526272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.