IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4054-d279840.html
   My bibliography  Save this article

Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage

Author

Listed:
  • Youssef Benchaabane

    (Laboratoire de recherche en énergie éolienne, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Rosa Elvira Silva

    (Institut technologique de maintenance industrielle, Cégep de Sept-Îles, Sept-Îles, QC G4R 5B7, Canada
    Groupe de recherche en électronique de puissance et commande industrielle, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada)

  • Hussein Ibrahim

    (Institut technologique de maintenance industrielle, Cégep de Sept-Îles, Sept-Îles, QC G4R 5B7, Canada)

  • Adrian Ilinca

    (Laboratoire de recherche en énergie éolienne, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada)

  • Ambrish Chandra

    (Groupe de recherche en électronique de puissance et commande industrielle, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada)

  • Daniel R. Rousse

    (Groupe de recherche industrielle en technologies de l’énergie et en efficacité énergétique, École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada)

Abstract

Remote and isolated communities in Canada experience gaps in access to stable energy sources and must rely on diesel generators for heat and electricity. However, the cost and environmental impact resulting from the use of fossil fuels, especially in local energy production, heating, industrial processes and transportation are compelling reasons to support the development and deployment of renewable energy hybrid systems. This paper presents a computer model for economic analysis and risk assessment of a wind–diesel hybrid system with compressed air energy storage. The proposed model is developed from the point of view of the project investor and it includes technical, financial, risk and environmental analysis. Robustness is evaluated through sensitivity analysis. The model has been validated by comparing the results of a wind–diesel case study against those obtained using HOMER (National Renewable Energy Laboratory, Golden, CO, United States) and RETScreen (Natural Resources Canada, Government of Canada, Canada) software. The impact on economic performance of adding energy storage system in a wind–diesel hybrid system has been discussed. The obtained results demonstrate the feasibility of such hybrid system as a suitable power generator in terms of high net present value and internal rate of return, low cost of energy, as well as low risk assessment. In addition, the environmental impact is positive since less fuel is used.

Suggested Citation

  • Youssef Benchaabane & Rosa Elvira Silva & Hussein Ibrahim & Adrian Ilinca & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for Financial, Environmental and Risk Analysis of a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4054-:d:279840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
    2. Coriolano Salvini, 2018. "CAES Systems Integrated into a Gas-Steam Combined Plant: Design Point Performance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
    3. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    4. Weis, Timothy M. & Ilinca, Adrian, 2008. "The utility of energy storage to improve the economics of wind–diesel power plants in Canada," Renewable Energy, Elsevier, vol. 33(7), pages 1544-1557.
    5. Weis, Timothy M. & Ilinca, Adrian, 2010. "Assessing the potential for a wind power incentive for remote villages in Canada," Energy Policy, Elsevier, vol. 38(10), pages 5504-5511, October.
    6. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    7. Nicolas Martinez & Youssef Benchaabane & Rosa Elvira Silva & Adrian Ilinca & Hussein Ibrahim & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(18), pages 1-18, September.
    8. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
    9. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    10. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation," Energy, Elsevier, vol. 38(1), pages 264-275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    2. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    3. Javier Solano & Diego Jimenez & Adrian Ilinca, 2020. "A Modular Simulation Testbed for Energy Management in AC/DC Microgrids," Energies, MDPI, vol. 13(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    2. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    3. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    4. Yuan, Jiahang & Luo, Xinggang & Li, Zhendong & Li, Lingfei & Ji, Pengli & Zhou, Qing & Zhang, Zhongliang, 2021. "Sustainable development evaluation on wind power compressed air energy storage projects based on multi-source heterogeneous data," Renewable Energy, Elsevier, vol. 169(C), pages 1175-1189.
    5. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    6. Huan Guo & Haoyuan Kang & Yujie Xu & Mingzhi Zhao & Yilin Zhu & Hualiang Zhang & Haisheng Chen, 2023. "Review of Coupling Methods of Compressed Air Energy Storage Systems and Renewable Energy Resources," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    8. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    9. Huang, Shucheng & Khajepour, Amir, 2022. "A new adiabatic compressed air energy storage system based on a novel compression strategy," Energy, Elsevier, vol. 242(C).
    10. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    11. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    12. Mohammed Issa Shahateet & Ghani Albaali & Abdul Ghafoor Saidi, 2021. "Energy and Environmental Analysis of Solar Air Cooling with 2-Stages Adsorption Chiller in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 16-26.
    13. Coriolano Salvini, 2018. "CAES Systems Integrated into a Gas-Steam Combined Plant: Design Point Performance Assessment," Energies, MDPI, vol. 11(2), pages 1-17, February.
    14. Zhihua Lin & Zhitao Zuo & Wenbin Guo & Jianting Sun & Qi Liang & Haisheng Chen, 2021. "Experimental Study on Effects of Adjustable Vaned Diffusers on Impeller Backside Cavity of Centrifugal Compressor in CAES," Energies, MDPI, vol. 14(19), pages 1-20, September.
    15. DinAli, Magd N. & Dincer, Ibrahim, 2018. "Development and analysis of an integrated gas turbine system with compressed air energy storage for load leveling and energy management," Energy, Elsevier, vol. 163(C), pages 604-617.
    16. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    17. He, Wei & Dooner, Mark & King, Marcus & Li, Dacheng & Guo, Songshan & Wang, Jihong, 2021. "Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation," Applied Energy, Elsevier, vol. 282(PA).
    18. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
    19. Karanasios, Konstantinos & Parker, Paul, 2018. "Tracking the transition to renewable electricity in remote indigenous communities in Canada," Energy Policy, Elsevier, vol. 118(C), pages 169-181.
    20. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4054-:d:279840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.