IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp802-810.html
   My bibliography  Save this article

A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas

Author

Listed:
  • Pali, Bahadur Singh
  • Vadhera, Shelly

Abstract

In this paper, a novel concept of small isolated electric power generation from pumped-hydro energy storage (PHES) using wind as primary energy is proposed for rural and remote areas where the wells are available. A suitable well is utilized as the lower reservoir of the PHES system, while the upper reservoir needed for the water storage is made on the ground. In this scheme, the wind turbine, unlike other PHES schemes is not used for rotating the electric generator at all, but to rotate the hydraulic pump, which is used to suck the water from the well and to store it in the upper reservoir. The water head created in this way is utilized to run a pico-hydro turbine coupled with a generator for generating electric power. The mathematical modelling of the system has also been developed in the paper. For the validation of the model, the simulation is carried out using the actual wind speed data. The attractive features of the scheme are its low cost, simplicity, reliability and continuity in power supply at constant voltage irrespective of wind speed variations.

Suggested Citation

  • Pali, Bahadur Singh & Vadhera, Shelly, 2018. "A novel pumped hydro-energy storage scheme with wind energy for power generation at constant voltage in rural areas," Renewable Energy, Elsevier, vol. 127(C), pages 802-810.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:802-810
    DOI: 10.1016/j.renene.2018.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118305494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stenzel, Peter & Linssen, Jochen, 2016. "Concept and potential of pumped hydro storage in federal waterways," Applied Energy, Elsevier, vol. 162(C), pages 486-493.
    2. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    3. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    4. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    5. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Zervos, Arthouros & Papantonis, Dimitris & Voutsinas, Spiros, 2008. "Pumped storage systems introduction in isolated power production systems," Renewable Energy, Elsevier, vol. 33(3), pages 467-490.
    6. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    7. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization," Applied Energy, Elsevier, vol. 137(C), pages 649-659.
    9. Ribeiro, Alan Emanuel Duailibe & Arouca, Maurício Cardoso & Coelho, Daniel Moreira, 2016. "Electric energy generation from small-scale solar and wind power in Brazil: The influence of location, area and shape," Renewable Energy, Elsevier, vol. 85(C), pages 554-563.
    10. Chatzivasileiadi, Aikaterini & Ampatzi, Eleni & Knight, Ian, 2013. "Characteristics of electrical energy storage technologies and their applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 814-830.
    11. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    12. Alnasir, Zuher & Kazerani, Mehrdad, 2016. "A small-scale standalone wind energy conversion system featuring SCIG, CSI and a novel storage integration scheme," Renewable Energy, Elsevier, vol. 89(C), pages 360-370.
    13. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Pumped hydro energy storage in buildings," Applied Energy, Elsevier, vol. 179(C), pages 1242-1250.
    14. Williamson, S.J. & Stark, B.H. & Booker, J.D., 2014. "Low head pico hydro turbine selection using a multi-criteria analysis," Renewable Energy, Elsevier, vol. 61(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Sayan & Ray, Avishek & De, Sudipta, 2020. "Optimum combination of renewable resources to meet local power demand in distributed generation: A case study for a remote place of India," Energy, Elsevier, vol. 209(C).
    2. Pali, Bahadur Singh & Vadhera, Shelly, 2021. "A novel approach for hydropower generation using photovoltaic electricity as driving energy," Applied Energy, Elsevier, vol. 302(C).
    3. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    4. Wang, Yong & Chi, Pei & Nie, Rui & Ma, Xin & Wu, Wenqing & Guo, Binghong, 2022. "Self-adaptive discrete grey model based on a novel fractional order reverse accumulation sequence and its application in forecasting clean energy power generation in China," Energy, Elsevier, vol. 253(C).
    5. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    6. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    8. Asmaa I. Abdelfattah & Mostafa F. Shaaban & Ahmed H. Osman & Abdelfatah Ali, 2023. "Optimal Management of Seasonal Pumped Hydro Storage System for Peak Shaving," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    9. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.
    10. Andrade Furtado, Gilton Carlos de & Amarante Mesquita, André Luiz & Morabito, Alessandro & Hendrick, Patrick & Hunt, Julian D., 2020. "Using hydropower waterway locks for energy storage and renewable energies integration," Applied Energy, Elsevier, vol. 275(C).
    11. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    2. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    3. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos de & Pereira Junior, Amaro Olímpio, 2017. "A review of seasonal pumped-storage combined with dams in cascade in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 385-398.
    5. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    6. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    7. Morabito, Alessandro & Hendrick, Patrick, 2019. "Pump as turbine applied to micro energy storage and smart water grids: A case study," Applied Energy, Elsevier, vol. 241(C), pages 567-579.
    8. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. de Oliveira e Silva, Guilherme & Hendrick, Patrick, 2016. "Pumped hydro energy storage in buildings," Applied Energy, Elsevier, vol. 179(C), pages 1242-1250.
    10. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    11. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    12. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    13. Shyam, B. & Kanakasabapathy, P., 2022. "Feasibility of floating solar PV integrated pumped storage system for a grid-connected microgrid under static time of day tariff environment: A case study from India," Renewable Energy, Elsevier, vol. 192(C), pages 200-215.
    14. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    15. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    16. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    17. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Khiadani, Mehdi & Das, Choton K., 2019. "An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses," Applied Energy, Elsevier, vol. 247(C), pages 228-236.
    18. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    19. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    20. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:802-810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.