IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v127y2018icp377-385.html
   My bibliography  Save this article

Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode

Author

Listed:
  • Yang, Jun
  • Pavesi, Giorgio
  • Liu, Xiaohua
  • Xie, Tian
  • Liu, Jun

Abstract

This article reports the fluid-dynamical analyses of unsteady flow in the first stage of a multistage pump-turbine where hump instability occurs. This stage can be seen as a centrifugal pump with multistage guide vanes in pump mode. Experimental and numerical approaches are adopted to contribute the understanding of the highly complex flow regime inner the test pump. In the experimental test, both dynamic pressure measurement and flow visualization techniques are adopted. A commercial code with detached eddy simulation (DES) model is used to compute the flow regime. The frequency analysis indicates that two unsteady flow patterns with a constant frequency occur in the hump instability region. The numerical and experimental unsteady flow fields are analysed to study the fluid-dynamical features of these unsteady patterns, in order to investigate the origin and reveal their contributions to the hump instability.

Suggested Citation

  • Yang, Jun & Pavesi, Giorgio & Liu, Xiaohua & Xie, Tian & Liu, Jun, 2018. "Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 377-385.
  • Handle: RePEc:eee:renene:v:127:y:2018:i:c:p:377-385
    DOI: 10.1016/j.renene.2018.04.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    2. Ming, Zeng & Kun, Zhang & Daoxin, Liu, 2013. "Overall review of pumped-hydro energy storage in China: Status quo, operation mechanism and policy barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 35-43.
    3. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    4. Deyou Li & Hongjie Wang & Jinxia Chen & Torbjørn K. Nielsen & Daqing Qin & Xianzhu Wei, 2016. "Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model," Energies, MDPI, vol. 9(8), pages 1-18, August.
    5. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suh, Jun-Won & Kim, Seung-Jun & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2020. "Effect of interface condition on the hydraulic characteristics of a pump-turbine at various guide vane opening conditions in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 986-1004.
    2. Štefan, David & Rossi, Mosè & Hudec, Martin & Rudolf, Pavel & Nigro, Alessandra & Renzi, Massimiliano, 2020. "Study of the internal flow field in a pump-as-turbine (PaT): Numerical investigation, overall performance prediction model and velocity vector analysis," Renewable Energy, Elsevier, vol. 156(C), pages 158-172.
    3. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    4. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    5. Deyou Li & Yuekun Sun & Zhigang Zuo & Shuhong Liu & Hongjie Wang & Zhenggui Li, 2018. "Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode," Energies, MDPI, vol. 11(6), pages 1-17, June.
    6. Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
    7. Zhao, Yuanqi & Li, Deyou & Chang, Hong & Fu, Xiaolong & Wang, Hongjie & Qin, Daqing, 2023. "Suppression effect of bionic guide vanes with different parameters on the hump characteristics of pump-turbines based on entropy production theory," Energy, Elsevier, vol. 283(C).
    8. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    9. Ran, Hongjuan & Liu, Yong & Luo, Xianwu & Shi, Tianjiao & Xu, Yongliang & Chen, Yuanlin & Wang, Dezhong, 2020. "Experimental comparison of two different positive slopes in one single pump turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1218-1228.
    10. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    11. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    2. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    3. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    4. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    5. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    6. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    7. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    8. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    9. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    10. Fu, Shifeng & Zheng, Yuan & Kan, Kan & Chen, Huixiang & Han, Xingxing & Liang, Xiaoling & Liu, Huiwen & Tian, Xiaoqing, 2020. "Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up," Renewable Energy, Elsevier, vol. 146(C), pages 1879-1887.
    11. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    12. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    13. Hunt, Julian David & Freitas, Marcos Aurélio Vasconcelos de & Pereira Junior, Amaro Olímpio, 2017. "A review of seasonal pumped-storage combined with dams in cascade in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 385-398.
    14. Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
    15. Paolo Sospiro & Leonardo Nibbi & Marco Ciro Liscio & Maurizio De Lucia, 2021. "Cost–Benefit Analysis of Pumped Hydroelectricity Storage Investment in China," Energies, MDPI, vol. 14(24), pages 1-20, December.
    16. Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
    17. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    18. Lu, Xu & Wang, Siheng, 2017. "A GIS-based assessment of Tibet's potential for pumped hydropower energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1045-1054.
    19. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Yongchuan & Li, Yonggang, 2020. "A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections," Applied Energy, Elsevier, vol. 261(C).
    20. Winde, Frank & Kaiser, Friederike & Erasmus, Ewald, 2017. "Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 668-682.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:127:y:2018:i:c:p:377-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.