IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp668-680.html
   My bibliography  Save this article

Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode

Author

Listed:
  • Li, Deyou
  • Wang, Hongjie
  • Qin, Yonglin
  • Li, Zhenggui
  • Wei, Xianzhu
  • Qin, Daqing

Abstract

Pumped storage technology has become the most important energy storage technology in industry today. The instabilities of pump-turbines as key parts of pumped storage power plants have become critical issues in development of pump storage technology. High-amplitude pressure fluctuations are one of such instabilities. In this study, unsteady numerical simulations were carried out in the pump mode of a pump-turbine at using the shear stress transport (SST) k-ω turbulence model. Performance characteristics agree well with experimental data. Unsteady characteristics of typical operating points were obtained. The results show that there are high-amplitude pressure fluctuations at the partial operating points. The frequency characteristics and the propagation law of an at-large partial operating point (0.74QBEP) were determined using time and frequency domain analysis methods (bispectrum, coherence) in combination with the flow field. The analysis results reveal that high-amplitude pressure fluctuations at point 0.74QBEP result from the rotation of Dean Vortices in the draft tube. Due to the rotation of the Dean Vortices, the blocking intensity of the two regions in the guide vane and the stay vane passages are periodically changed at a frequency 0.58fn, which results in a shock phenomenon in the guide/stay vanes.

Suggested Citation

  • Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:668-680
    DOI: 10.1016/j.renene.2018.03.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yabin Liu & Lei Tan & Yue Hao & Yun Xu, 2017. "Energy Performance and Flow Patterns of a Mixed-Flow Pump with Different Tip Clearance Sizes," Energies, MDPI, vol. 10(2), pages 1-15, February.
    2. Beevers, D. & Branchini, L. & Orlandini, V. & De Pascale, A. & Perez-Blanco, H., 2015. "Pumped hydro storage plants with improved operational flexibility using constant speed Francis runners," Applied Energy, Elsevier, vol. 137(C), pages 629-637.
    3. Deyou Li & Hongjie Wang & Jinxia Chen & Torbjørn K. Nielsen & Daqing Qin & Xianzhu Wei, 2016. "Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model," Energies, MDPI, vol. 9(8), pages 1-18, August.
    4. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    5. Zuo, Zhigang & Liu, Shuhong & Sun, Yuekun & Wu, Yulin, 2015. "Pressure fluctuations in the vaneless space of High-head pump-turbines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 965-974.
    6. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    7. Rogeau, A. & Girard, R. & Kariniotakis, G., 2017. "A generic GIS-based method for small Pumped Hydro Energy Storage (PHES) potential evaluation at large scale," Applied Energy, Elsevier, vol. 197(C), pages 241-253.
    8. Mulu, B.G. & Jonsson, P.P. & Cervantes, M.J., 2012. "Experimental investigation of a Kaplan draft tube – Part I: Best efficiency point," Applied Energy, Elsevier, vol. 93(C), pages 695-706.
    9. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    10. Jonsson, P.P. & Mulu, B.G. & Cervantes, M.J., 2012. "Experimental investigation of a Kaplan draft tube – Part II: Off-design conditions," Applied Energy, Elsevier, vol. 94(C), pages 71-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    2. Deyou Li & Yuekun Sun & Zhigang Zuo & Shuhong Liu & Hongjie Wang & Zhenggui Li, 2018. "Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    4. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    5. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
    6. Yang, Fan & Li, Zhongbin & Yuan, Yao & Lin, Zhikang & Zhou, Guangxin & Ji, Qingwei, 2022. "Study on vortex flow and pressure fluctuation in dustpan-shaped conduit of a low head axial-flow pump as turbine," Renewable Energy, Elsevier, vol. 196(C), pages 856-869.
    7. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    8. Yun Jia & Xianzhu Wei & Qianyun Wang & Jinsheng Cui & Fengchen Li, 2019. "Experimental Study of the Effect of Splitter Blades on the Performance Characteristics of Francis Turbines," Energies, MDPI, vol. 12(9), pages 1-16, May.
    9. Sun, Longgang & Guo, Pengcheng & Luo, Xingqi, 2020. "Numerical investigation on inter-blade cavitation vortex in a Franics turbine," Renewable Energy, Elsevier, vol. 158(C), pages 64-74.
    10. Muhirwa, Alexis & Li, Biao & Su, Wen-Tao & Liu, Quan-Zhong & Binama, Maxime & Wu, Jian & Cai, Wei-Hua, 2020. "Investigation on mutual traveling influences between the draft tube and upstream components of a Francis turbine unit," Renewable Energy, Elsevier, vol. 162(C), pages 973-992.
    11. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    12. Liu, Quan-Zhong & Su, Wen-Tao & Li, Xiao-Bin & Zhang, Ya-Ning, 2020. "Dynamic characteristics of load rejection process in a reversible pump-turbine," Renewable Energy, Elsevier, vol. 146(C), pages 1922-1931.
    13. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    14. Zhang, Mengjie & Huang, Biao & Wu, Qin & Zhang, Mindi & Wang, Guoyu, 2020. "The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil," Renewable Energy, Elsevier, vol. 161(C), pages 1276-1291.
    15. Ran, Hongjuan & Liu, Yong & Luo, Xianwu & Shi, Tianjiao & Xu, Yongliang & Chen, Yuanlin & Wang, Dezhong, 2020. "Experimental comparison of two different positive slopes in one single pump turbine," Renewable Energy, Elsevier, vol. 154(C), pages 1218-1228.
    16. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    17. Luo, Xianwu & Ye, Weixiang & Huang, Renfang & Wang, Yiwei & Du, Tezhuan & Huang, Chenguang, 2020. "Numerical investigations of the energy performance and pressure fluctuations for a waterjet pump in a non-uniform inflow," Renewable Energy, Elsevier, vol. 153(C), pages 1042-1052.
    18. Muhirwa, Alexis & Cai, Wei-Hua & Su, Wen-Tao & Liu, Quanzhong & Binama, Maxime & Li, Biao & Wu, Jian, 2020. "A review on remedial attempts to counteract the power generation compromise from draft tubes of hydropower plants," Renewable Energy, Elsevier, vol. 150(C), pages 743-764.
    19. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    20. Zhang, Mengjie & Liu, Taotao & Huang, Biao & Wu, Qin & Wang, Guoyu, 2020. "Hydrodynamic characteristics and flow structures of pitching hydrofoil with special emphasis on the added force effect," Renewable Energy, Elsevier, vol. 157(C), pages 560-573.
    21. Jiao, Weixuan & Chen, Hongjun & Cheng, Li & Zhang, Bowen & Gu, Yangdong, 2023. "Energy loss and pressure fluctuation characteristics of coastal two-way channel pumping stations under the ultra-low head condition," Energy, Elsevier, vol. 278(PA).
    22. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    23. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    2. Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
    3. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    4. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    5. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    6. Cavazzini, Giovanna & Houdeline, Jean-Bernard & Pavesi, Giorgio & Teller, Olivier & Ardizzon, Guido, 2018. "Unstable behaviour of pump-turbines and its effects on power regulation capacity of pumped-hydro energy storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 399-409.
    7. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    8. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    9. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu & Qin, Daqing, 2018. "Numerical simulation of hysteresis characteristic in the hump region of a pump-turbine model," Renewable Energy, Elsevier, vol. 115(C), pages 433-447.
    10. Li, Xiao-Bin & Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Muhirwa, Alexis & Li, Biao & Li, Feng-Chen, 2020. "Runner blade number influencing RPT runner flow characteristics under off-design conditions," Renewable Energy, Elsevier, vol. 152(C), pages 876-891.
    11. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.
    12. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    13. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    14. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    15. Suh, Jun-Won & Yang, Hyeon-Mo & Kim, Jin-Hyuk & Joo, Won-Gu & Park, Jungwan & Choi, Young-Seok, 2021. "Unstable S-shaped characteristics of a pump-turbine unit in a lab-scale model," Renewable Energy, Elsevier, vol. 171(C), pages 1395-1417.
    16. Yang, Jun & Pavesi, Giorgio & Liu, Xiaohua & Xie, Tian & Liu, Jun, 2018. "Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 377-385.
    17. Lai, Xi-De & Liang, Quan-Wei & Ye, Dao-Xing & Chen, Xiao-Ming & Xia, Mi-Mi, 2019. "Experimental investigation of flows inside draft tube of a high-head pump-turbine," Renewable Energy, Elsevier, vol. 133(C), pages 731-742.
    18. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2018. "Influence of the clearance flow on the load rejection process in a pump-turbine," Renewable Energy, Elsevier, vol. 127(C), pages 310-321.
    19. Simin Shen & Zhongdong Qian & Bin Ji, 2019. "Numerical Analysis of Mechanical Energy Dissipation for an Axial-Flow Pump Based on Entropy Generation Theory," Energies, MDPI, vol. 12(21), pages 1-22, October.
    20. Guo, Bao & Xiao, Yexiang & Rai, Anant Kumar & Zhang, Jin & Liang, Quanwei, 2020. "Sediment-laden flow and erosion modeling in a Pelton turbine injector," Renewable Energy, Elsevier, vol. 162(C), pages 30-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:668-680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.