IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp719-733.html
   My bibliography  Save this article

Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode

Author

Listed:
  • Wang, Wenjie
  • Tai, Geyuan
  • Pei, Ji
  • Pavesi, Giorgio
  • Yuan, Shouqi

Abstract

Two kinds of two-stage broken line closure laws of the wicket gates, modified A scheme (MAS) and modified B scheme (MBS), are presented to investigate the relationship between the wicket gates closure law and pressure pulsation shutting down pump turbines. The Detached Eddy Simulation (DES) model that is based on the moving mesh technology, is adopted to simulate the process of closure of the wicket gates. The results are analyzed in the time-domain and the time-frequency domain by Continuous Wavelet Transform (CWT). It was discovered that at the vaneless space, there isa intense pulsation at Blade Passing Frequency (BPF) lasting up to 3s in the original scheme (OS) of linear closure law, while the duration is reduced by 16.17% in MAS and has little change in MBS. At the leading edge of the stay vane, the high amplitude pulsation lasting nearly 1s is observed in OS. However, this pulse duration is reduced by 50% in MAS. Interestingly, in MAS, there is also a stabilization period lasting 1s before the wicket gates are fully closed, which is consistent with the pressure characteristics at the outlet of wicket gate. Moreover, the BPF and low frequency are the main components in the time-frequency plots. And the fluctuation energy at BPF and low frequency in the MAS is significantly smaller than the other two schemes. It is important that the torque duration at BPF is significantly reduced by 35% in MAS and slightly reduced in MBS. It is worth noting that the closure law of wicket gates has great effect on the pressure pulsation at BPF. This study is crucial improving the transient characteristics of pump turbines in pump mode by using the two-stage broken line closure law.

Suggested Citation

  • Wang, Wenjie & Tai, Geyuan & Pei, Ji & Pavesi, Giorgio & Yuan, Shouqi, 2022. "Numerical investigation of the effect of the closure law of wicket gates on the transient characteristics of pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 194(C), pages 719-733.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:719-733
    DOI: 10.1016/j.renene.2022.05.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenjie & Pavesi, Giorgio & Pei, Ji & Yuan, Shouqi, 2020. "Transient simulation on closure of wicket gates in a high-head Francis-type reversible turbine operating in pump mode," Renewable Energy, Elsevier, vol. 145(C), pages 1817-1830.
    2. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Nan, 2019. "Multi-objective optimization of the closure law of guide vanes for pumped storage units," Renewable Energy, Elsevier, vol. 139(C), pages 302-312.
    3. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    4. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez Rodriguez & Huiwen Liu & Jun Feng, 2019. "Analysis on Guide Vane Closure Schemes of High-Head Pumped Storage Unit during Pump Outage Condition," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-11, December.
    5. Li, Deyou & Wang, Hongjie & Li, Zhenggui & Nielsen, Torbjørn Kristian & Goyal, Rahul & Wei, Xianzhu & Qin, Daqing, 2018. "Transient characteristics during the closure of guide vanes in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 118(C), pages 973-983.
    6. Yang, Jun & Pavesi, Giorgio & Liu, Xiaohua & Xie, Tian & Liu, Jun, 2018. "Unsteady flow characteristics regarding hump instability in the first stage of a multistage pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 377-385.
    7. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    8. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    2. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    3. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    4. Linjun Shi & Fan Yang & Yang Li & Tao Zheng & Feng Wu & Kwang Y. Lee, 2022. "Optimal Configuration of Electrochemical Energy Storage for Renewable Energy Accommodation Based on Operation Strategy of Pumped Storage Hydro," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    5. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    6. Zhou, Xing & Wu, Hegao & Cheng, Li & Huang, Quanshui & Shi, Changzheng, 2023. "A new draft tube shape optimisation methodology of introducing inclined conical diffuser in hydraulic turbine," Energy, Elsevier, vol. 265(C).
    7. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    2. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    3. Li, Deyou & Zuo, Zhigang & Wang, Hongjie & Liu, Shuhong & Wei, Xianzhu & Qin, Daqing, 2019. "Review of positive slopes on pump performance characteristics of pump-turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 901-916.
    4. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    5. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    6. Zheming Tong & Zhongqin Yang & Qing Huang & Qiang Yao, 2022. "Numerical Modeling of the Hydrodynamic Performance of Slanted Axial-Flow Urban Drainage Pumps at Shut-Off Condition," Energies, MDPI, vol. 15(5), pages 1-17, March.
    7. Jin, Faye & Luo, Yongyao & Zhao, Qiang & Cao, Jiali & Wang, Zhengwei, 2023. "Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process," Energy, Elsevier, vol. 284(C).
    8. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    9. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    10. Lei, Liuwei & Li, Feng & Kheav, Kimleng & Jiang, Wei & Luo, Xingqi & Patelli, Edoardo & Xu, Beibei & Chen, Diyi, 2021. "A start-up optimization strategy of a hydroelectric generating system: From a symmetrical structure to asymmetric structure on diversion pipes," Renewable Energy, Elsevier, vol. 180(C), pages 1148-1165.
    11. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    12. Li, Deyou & Fu, Xiaolong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Liu, Shuhong & Wei, Xianzhu, 2019. "Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 26-46.
    13. Yang, Zhiyan & Cheng, Yongguang & Xia, Linsheng & Meng, Wanwan & Liu, Ke & Zhang, Xiaoxi, 2020. "Evolutions of flow patterns and pressure fluctuations in a prototype pump-turbine during the runaway transient process after pump-trip," Renewable Energy, Elsevier, vol. 152(C), pages 1149-1159.
    14. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    15. Wang, Wenjie & Guo, Hailong & Zhang, Chenying & Shen, Jiawei & Pei, Ji & Yuan, Shouqi, 2023. "Transient characteristics of PAT in micro pumped hydro energy storage during abnormal shutdown process," Renewable Energy, Elsevier, vol. 209(C), pages 401-412.
    16. Lin, Tong & Li, Xiaojun & Zhu, Zuchao & Xie, Jing & Li, Yi & Yang, Hui, 2021. "Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as turbine," Renewable Energy, Elsevier, vol. 163(C), pages 41-55.
    17. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    18. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    19. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    20. Deyou Li & Yuekun Sun & Zhigang Zuo & Shuhong Liu & Hongjie Wang & Zhenggui Li, 2018. "Analysis of Pressure Fluctuations in a Prototype Pump-Turbine with Different Numbers of Runner Blades in Turbine Mode," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:719-733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.