IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v118y2018icp99-112.html

A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures

Author

Listed:
  • Häfele, Jan
  • Hübler, Clemens
  • Gebhardt, Cristian Guillermo
  • Rolfes, Raimund

Abstract

Designing jacket substructures for offshore wind turbines demands numerous time domain simulations to face different combinations of wind, wave, and current states. Regarding sophisticated design methods incorporating structural optimization algorithms, a load set reduction is highly desirable. To obtain knowledge about the required size of the design load set, a study on fatigue limit state load sets is conducted, which addresses mainly two aspects. The first one is a statistical evaluation of random subsets derived from probabilistic load sets with realistic environmental data obtained from the research platform FINO3. A full set comprising 2048 load simulations is gradually reduced to subsets and the results are compared to each other. The second aspect is a systematic load set reduction with the assumption of unidirectional wind, waves, and current. Firstly, critical directions are determined. Then, unidirectional load sets are systematically reduced. The corresponding damages are compared to those obtained from probabilistic load sets for eight test structures. It is shown that the omission of wind-, wave-, and current-misalignment does not necessarily imply an excessive simplification, if considered wisely. The outcome of this study can be used to decrease the numerical effort of the jacket design process and the levelized costs of energy.

Suggested Citation

  • Häfele, Jan & Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2018. "A comprehensive fatigue load set reduction study for offshore wind turbines with jacket substructures," Renewable Energy, Elsevier, vol. 118(C), pages 99-112.
  • Handle: RePEc:eee:renene:v:118:y:2018:i:c:p:99-112
    DOI: 10.1016/j.renene.2017.10.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117310650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.10.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hübler, Clemens & Gebhardt, Cristian Guillermo & Rolfes, Raimund, 2017. "Hierarchical four-step global sensitivity analysis of offshore wind turbines based on aeroelastic time domain simulations," Renewable Energy, Elsevier, vol. 111(C), pages 878-891.
    2. Benedikt Ernst & Jörg R. Seume, 2012. "Investigation of Site-Specific Wind Field Parameters and Their Effect on Loads of Offshore Wind Turbines," Energies, MDPI, vol. 5(10), pages 1-21, October.
    3. Toft, Henrik Stensgaard & Svenningsen, Lasse & Sørensen, John Dalsgaard & Moser, Wolfgang & Thøgersen, Morten Lybech, 2016. "Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads," Renewable Energy, Elsevier, vol. 90(C), pages 352-361.
    4. Dong, Wenbin & Moan, Torgeir & Gao, Zhen, 2012. "Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 11-27.
    5. Morató, A. & Sriramula, S. & Krishnan, N. & Nichols, J., 2017. "Ultimate loads and response analysis of a monopile supported offshore wind turbine using fully coupled simulation," Renewable Energy, Elsevier, vol. 101(C), pages 126-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Ren, Chao & Xing, Yihan, 2023. "AK-MDAmax: Maximum fatigue damage assessment of wind turbine towers considering multi-location with an active learning approach," Renewable Energy, Elsevier, vol. 215(C).
    3. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    4. Clemens Hübler & Wout Weijtjens & Cristian G. Gebhardt & Raimund Rolfes & Christof Devriendt, 2019. "Validation of Improved Sampling Concepts for Offshore Wind Turbine Fatigue Design," Energies, MDPI, vol. 12(4), pages 1-20, February.
    5. Hübler, Clemens, 2020. "Global sensitivity analysis for medium-dimensional structural engineering problems using stochastic collocation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Ju, Shen-Haw & Su, Feng-Chien & Ke, Yi-Pei & Xie, Min-Hsuan, 2019. "Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme," Renewable Energy, Elsevier, vol. 136(C), pages 69-78.
    7. Njiri, Jackson G. & Beganovic, Nejra & Do, Manh H. & Söffker, Dirk, 2019. "Consideration of lifetime and fatigue load in wind turbine control," Renewable Energy, Elsevier, vol. 131(C), pages 818-828.
    8. Maximilian Henkel & Wout Weijtjens & Christof Devriendt, 2021. "Fatigue Stress Estimation for Submerged and Sub-Soil Welds of Offshore Wind Turbines on Monopiles Using Modal Expansion," Energies, MDPI, vol. 14(22), pages 1-21, November.
    9. Chen, Chao & Duffour, Philippe & Fromme, Paul & Hua, Xugang, 2021. "Numerically efficient fatigue life prediction of offshore wind turbines using aerodynamic decoupling," Renewable Energy, Elsevier, vol. 178(C), pages 1421-1434.
    10. Ho-Seong Yang & Ali Alkhabbaz & Young-Ho Lee, 2025. "Toward Reliable FOWT Modeling: A New Calibration Approach for Extreme Environmental Loads," Energies, MDPI, vol. 18(20), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Fucheng & Wang, Wenhua & Zheng, Xiao-Wei & Han, Xu & Shi, Wei & Li, Xin, 2025. "Investigation of essential parameters for the design of offshore wind turbine based on structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Velarde, Joey & Kramhøft, Claus & Sørensen, John Dalsgaard, 2019. "Global sensitivity analysis of offshore wind turbine foundation fatigue loads," Renewable Energy, Elsevier, vol. 140(C), pages 177-189.
    3. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    4. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    6. Deirdre O’Donnell & Jimmy Murphy & Vikram Pakrashi, 2020. "Damage Monitoring of a Catenary Moored Spar Platform for Renewable Energy Devices," Energies, MDPI, vol. 13(14), pages 1-22, July.
    7. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    8. Li, Xiao-Yang & Chen, Wen-Bin & Kang, Rui, 2021. "Performance margin-based reliability analysis for aircraft lock mechanism considering multi-source uncertainties and wear," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    10. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    11. Ju, Shen-Haw, 2022. "Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    13. Precious Chisom Jumbo-Egwurugwu & Franklin Okoro & Ibe Emmanuel & Obo-Obaa Elera Njiran, 2022. "Technical Evaluation of Cathodic Protection of Subsea Structures," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 9(4), pages 01-05, April.
    14. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2018. "Time-variant fatigue reliability assessment of welded joints based on the PHI2 and response surface methods," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 120-130.
    15. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    16. Rezaeiha, Abdolrahim & Pereira, Ricardo & Kotsonis, Marios, 2017. "Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 904-916.
    17. Zhongbo Hu & Liangxian Li & Xiang Gao & Jianfeng Xu & Xinyi Liu & Sen Gong & Wenhua Wang & Wei Shi & Xin Li, 2025. "A Fully Coupled Sensitivity Analysis Framework for Offshore Wind Turbines Based on an XGBoost Surrogate Model and the Interpretation of SHAP," Sustainability, MDPI, vol. 17(20), pages 1-20, October.
    18. Zavvar, Esmaeil & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ghafoori, Elyas, 2025. "Lifetime extension of offshore support structures of wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 217(C).
    19. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    20. Junejo, Allah Rakhio & Gilal, Nauman Ullah & Doh, Jaehyeok, 2023. "Physics-informed optimization of robust control system to enhance power efficiency of renewable energy: Application to wind turbine," Energy, Elsevier, vol. 263(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:118:y:2018:i:c:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.