IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017135.html
   My bibliography  Save this article

Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning

Author

Listed:
  • Shao, Yizhe
  • Liu, Jie

Abstract

Offshore wind turbines (WTs) are crucial in offshore wind energy development. However, the dynamic responses of WTs are subject to significant uncertainties which are usually not properly considered. To the end, this paper proposes an efficient method for quantifying the uncertainties in WTs' dynamic responses based on cumulative distribution function (CDF)-manifold learning. First, a probabilistic model is developed to represent the environmental parameters and sampling for aerodynamic-hydraulic-servo-elastic simulations. Then, the CDF is obtained by statistically analyzing the simulated data. To tackle the higher dimensionality resulting from discretizing the CDF, a manifold learning-based approach is subsequently proposed to reduce its dimensionality and obtain a manifold space. Furthermore, a mapping relation is established between the environmental parameters and the low-dimensional data to efficiently obtain the response CDF under different environmental parameters, leading to the construction of a probability box (P-box) model. To demonstrate the effectiveness of the proposed method, the National Renewable Energy Laboratory (NREL) 5 MW offshore WT on an Offshore Code Comparison Collaboration (OC3) monopile is selected as a case study and analyzed accordingly. The results show P-box models of seven WT responses and validate the effectiveness of the proposed method.

Suggested Citation

  • Shao, Yizhe & Liu, Jie, 2024. "Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017135
    DOI: 10.1016/j.renene.2023.119798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.