IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i2p241-257d7190.html
   My bibliography  Save this article

Probabilistic Design of Wind Turbines

Author

Listed:
  • John D. Sørensen

    (Aalborg University and Risø-DTU, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark)

  • Henrik S. Toft

    (Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark)

Abstract

Probabilistic design of wind turbines requires definition of the structural elements to be included in the probabilistic basis: e.g., blades, tower, foundation; identification of important failure modes; careful stochastic modeling of the uncertain parameters; recommendations for target reliability levels and recommendation for consideration of system aspects. The uncertainties are characterized as aleatoric (physical uncertainty) or epistemic (statistical, measurement and model uncertainties). Methods for uncertainty modeling consistent with methods for estimating the reliability are described. It is described how uncertainties in wind turbine design related to computational models, statistical data from test specimens, results from a few full-scale tests and from prototype wind turbines can be accounted for using the Maximum Likelihood Method and a Bayesian approach. Assessment of the optimal reliability level by cost-benefit optimization is illustrated by an offshore wind turbine example. Uncertainty modeling is illustrated by an example where physical, statistical and model uncertainties are estimated.

Suggested Citation

  • John D. Sørensen & Henrik S. Toft, 2010. "Probabilistic Design of Wind Turbines," Energies, MDPI, vol. 3(2), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:241-257:d:7190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/2/241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/2/241/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilkie, David & Galasso, Carmine, 2020. "A probabilistic framework for offshore wind turbine loss assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 1772-1783.
    2. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Jianjun Qin & Michael Havbro Faber, 2019. "Resilience Informed Integrity Management of Wind Turbine Parks," Energies, MDPI, vol. 12(14), pages 1-19, July.
    4. Hesam Mirzaei Rafsanjani & John Dalsgaard Sørensen & Søren Fæster & Asger Sturlason, 2017. "Fatigue Reliability Analysis of Wind Turbine Cast Components," Energies, MDPI, vol. 10(4), pages 1-14, April.
    5. Michael Muskulus, 2015. "Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis," Energies, MDPI, vol. 8(12), pages 1-14, December.
    6. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.
    7. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    8. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    9. Okpokparoro, Salem & Sriramula, Srinivas, 2021. "Uncertainty modeling in reliability analysis of floating wind turbine support structures," Renewable Energy, Elsevier, vol. 165(P1), pages 88-108.
    10. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    11. Kostandyan, Erik E. & Sørensen, John D., 2012. "Physics of failure as a basis for solder elements reliability assessment in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 100-107.
    12. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:241-257:d:7190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.