IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v58y2013icp140-150.html

Windtane contour map of the state of Texas

Author

Listed:
  • Leer, Donald
  • Chang, Byungik
  • Chen, Gerald
  • Carr, David
  • Starcher, Kenneth
  • Issa, Roy

Abstract

With the expansion of wind energy development, there is a need to update wind data periodically for the state of Texas for developers and landowners to see if their properties could support wind turbines. This study presents an updated wind power map and a Windtane contour map of the state of Texas. The Windtane map shows the height above ground level needed to reach a baseline wind power level of 350 W/m2. This level is where the middle of class 3 wind power occurs and is widely considered to be the lower limit of the annual power level fort wind turbines to be economically viable for installation. The Windtane map using ArcGIS can be reconfigured to represent different power levels if need to. Both maps use a ‘certainty zone’ concept to constrain the areas where wind power is projected and to give increased confidence in the data to those areas projected into.

Suggested Citation

  • Leer, Donald & Chang, Byungik & Chen, Gerald & Carr, David & Starcher, Kenneth & Issa, Roy, 2013. "Windtane contour map of the state of Texas," Renewable Energy, Elsevier, vol. 58(C), pages 140-150.
  • Handle: RePEc:eee:renene:v:58:y:2013:i:c:p:140-150
    DOI: 10.1016/j.renene.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: Introduction and statistical analysis," Renewable Energy, Elsevier, vol. 33(6), pages 1237-1250.
    2. Fox, Neil I., 2011. "A tall tower study of Missouri winds," Renewable Energy, Elsevier, vol. 36(1), pages 330-337.
    3. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    4. Bañuelos-Ruedas, F. & Angeles-Camacho, C. & Rios-Marcuello, S., 2010. "Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2383-2391, October.
    5. Cellura, M. & Cirrincione, G. & Marvuglia, A. & Miraoui, A., 2008. "Wind speed spatial estimation for energy planning in Sicily: A neural kriging application," Renewable Energy, Elsevier, vol. 33(6), pages 1251-1266.
    6. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    7. Hossain, Jami & Sinha, Vinay & Kishore, V.V.N., 2011. "A GIS based assessment of potential for windfarms in India," Renewable Energy, Elsevier, vol. 36(12), pages 3257-3267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gass, Viktoria & Schmidt, Johannes & Strauss, Franziska & Schmid, Erwin, 2013. "Assessing the economic wind power potential in Austria," Energy Policy, Elsevier, vol. 53(C), pages 323-330.
    2. González-Longatt, Francisco & Medina, Humberto & Serrano González, Javier, 2015. "Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 1-16.
    3. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    4. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    5. Hanslian, David & Hošek, Jiří, 2015. "Combining the VAS 3D interpolation method and Wind Atlas methodology to produce a high-resolution wind resource map for the Czech Republic," Renewable Energy, Elsevier, vol. 77(C), pages 291-299.
    6. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    7. Veronesi, F. & Grassi, S. & Raubal, M., 2016. "Statistical learning approach for wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 836-850.
    8. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    9. Calif, Rudy & Emilion, Richard & Soubdhan, Ted, 2011. "Classification of wind speed distributions using a mixture of Dirichlet distributions," Renewable Energy, Elsevier, vol. 36(11), pages 3091-3097.
    10. Beccali, M. & Cirrincione, G. & Marvuglia, A. & Serporta, C., 2010. "Estimation of wind velocity over a complex terrain using the Generalized Mapping Regressor," Applied Energy, Elsevier, vol. 87(3), pages 884-893, March.
    11. de la Rosa, Juan José González & Pérez, Agustín Agüera & Palomares Salas, José Carlos & Ramiro Leo, José Gabriel & Muñoz, Antonio Moreno, 2011. "A novel inference method for local wind conditions using genetic fuzzy systems," Renewable Energy, Elsevier, vol. 36(6), pages 1747-1753.
    12. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    13. Maciej J. Nowak & Agnieszka Brelik & Anna Oleńczuk-Paszel & Monika Śpiewak-Szyjka & Justyna Przedańska, 2023. "Spatial Conflicts concerning Wind Power Plants—A Case Study of Spatial Plans in Poland," Energies, MDPI, vol. 16(2), pages 1-20, January.
    14. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    15. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    16. Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
    17. Morano, Pierluigi & Tajani, Francesco & Locurcio, Marco, 2017. "GIS application and econometric analysis for the verification of the financial feasibility of roof-top wind turbines in the city of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 999-1010.
    18. Collados-Lara, Antonio-Juan & Baena-Ruiz, Leticia & Pulido-Velazquez, David & Pardo-Igúzquiza, Eulogio, 2022. "Data-driven mapping of hourly wind speed and its potential energy resources: A sensitivity analysis," Renewable Energy, Elsevier, vol. 199(C), pages 87-102.
    19. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    20. Feng Qing & Xiaohuan Liu & Zhaoyong Jiang & Shaoda Li, 2020. "Assessment of energy strategy pressure based on geographical information system," Energy & Environment, , vol. 31(6), pages 1031-1054, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:58:y:2013:i:c:p:140-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.