IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007907.html
   My bibliography  Save this article

Vulnerability evolution of critical infrastructures: A multidimensional environment-integrated system dynamics analysis

Author

Listed:
  • Gong, Shitao
  • Chen, Linyan
  • Zhou, Qianqian
  • Gao, Xin
  • Shen, Feng

Abstract

Critical infrastructures (CIs) form the foundation of modern society, highlighting the necessity of analyzing their vulnerability characteristics. Existing research on CI vulnerability has not fully explored the environmental impacts on CI vulnerability and the long-term dynamic characteristics of vulnerability. To address these gaps, this study proposes an integrated framework for CI vulnerability evolution that incorporates environmental factors from nature, physical, and socio-economic dimensions, along with four key components of CI vulnerability: risk exposure, physical fragility, environmental sensitivity, and recovery capacity. Then, a system dynamics (SD)-based model is developed to quantitatively measure the complex interactions between environmental factors and CI vulnerability, thereby revealing the dynamic evolutionary mechanisms of vulnerability driven by these interactions. The model's effectiveness is demonstrated through a case simulation, with the results revealing the following findings: First, the dynamics of CI vulnerability evolution arise from the long-term driving, feedback, and iteration processes between environmental factors and vulnerability. These processes shape the nonlinear growth and adaptive characteristics of CI vulnerability evolution. Second, each environmental factor has a distinct marginal impact and direction on the evolution of CI vulnerability. This study provides a holistic and dynamic analysis for CI vulnerability and offers insights for optimizing vulnerability mitigation strategies.

Suggested Citation

  • Gong, Shitao & Chen, Linyan & Zhou, Qianqian & Gao, Xin & Shen, Feng, 2025. "Vulnerability evolution of critical infrastructures: A multidimensional environment-integrated system dynamics analysis," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007907
    DOI: 10.1016/j.ress.2024.110719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    3. Bellè, Andrea & Zeng, Zhiguo & Duval, Carole & Sango, Marc & Barros, Anne, 2022. "Modeling and vulnerability analysis of interdependent railway and power networks: Application to British test systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Suwan Shen & Xi Feng & Zhong Ren Peng, 2016. "A framework to analyze vulnerability of critical infrastructure to climate change: the case of a coastal community in Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 589-609, October.
    6. Olabode Amusan & Shuomang Shi & Di Wu & Haitao Liao, 2023. "Structural Vulnerability Analysis of Interdependent Electric Power and Natural Gas Systems," Energies, MDPI, vol. 16(19), pages 1-13, October.
    7. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    8. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    10. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Zhang, Hui & Xu, Min & Ouyang, Min, 2024. "A multi-perspective functionality loss assessment of coupled railway and airline systems under extreme events," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Mao, Ding & Wang, Peng & Fang, Yi-Ping & Ni, Long, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Applied Energy, Elsevier, vol. 369(C).
    15. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2016. "A holistic framework for building critical infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 21-33.
    16. Opabola, Eyitayo A. & Galasso, Carmine, 2024. "A probabilistic framework for post-disaster recovery modeling of buildings and electric power networks in developing countries," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Heinzel, Christine & van der Heijden, Sophie & Mayer, Aljoscha & Sänger, Nathalie & Sandholz, Simone, 2024. "Need for intensive care? A socio-technical systems perspective on water supply failure preparedness in German health care facilities," International Journal of Critical Infrastructure Protection, Elsevier, vol. 44(C).
    19. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    20. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    21. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    22. Valaei Sharif, Shahab & Habibi Moshfegh, Peyman & Kashani, Hamed, 2023. "Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    23. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    24. Lordan-Perret, Rebecca & Wright, Austin L. & Burgherr, Peter & Spada, Matteo & Rosner, Robert, 2019. "Attacks on energy infrastructure targeting democratic institutions," Energy Policy, Elsevier, vol. 132(C), pages 915-927.
    25. Ding Mao & Peng Wang & Yi-Ping Fang & Long Ni, 2024. "Securing heat-supply against seismic risks: A two-staged framework for assessing vulnerability and economic impacts in district heating networks," Post-Print hal-04639686, HAL.
    26. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    27. Ming Zhang & Wenbo Xiang & Meilan Chen & Zisen Mao, 2018. "Measuring Social Vulnerability to Flood Disasters in China," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Mijie & Guo, Peng & Zio, Enrico & Zhao, Jing, 2025. "Assessing the vulnerability of power network accounting for demand diversity among urban functional zones," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    2. Selivanova, Anna & KrejÄ Ã­, Igor & Sedlářová-Nehézová, Tereza & Hůlka, Jiří & ÄŒeÅ¡pírová, Irena & KuÄ a, Petr, 2025. "Creation of a System Dynamics model of recovery of affected areas after radioactive contamination," Reliability Engineering and System Safety, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Emma Lonergan & Salvatore Francesco Greco & Giovanni Sansavini, 2023. "Ensuring/insuring resilient energy system infrastructure," Environment Systems and Decisions, Springer, vol. 43(4), pages 625-638, December.
    2. Moglen, Rachel L. & Leibowicz, Benjamin D. & Kwasinski, Alexis, 2025. "The value of coordination for restoring power and wireless communication networks," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    3. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Du, Mijie & Guo, Peng & Zio, Enrico & Zhao, Jing, 2025. "Assessing the vulnerability of power network accounting for demand diversity among urban functional zones," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    5. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. He, Shan & Shi, Shiliang & Li, Min & Lin, Zhijun & Lu, Yi & Li, He, 2025. "Model of safety investment optimization in chemical industrial parks based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    9. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore & Eakalak Khan, 2024. "Vulnerability assessment of critical infrastructures for cascading failures: An application to water distribution networks," Journal of Risk and Reliability, , vol. 238(5), pages 1074-1087, October.
    11. Mahmoud, Hussam & Kirsch, Thomas & O'Neil, Dan & Anderson, Shelby, 2023. "The resilience of health care systems following major disruptive events: Current practice and a path forward," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Zhang, Jianhua & Min, Qinjie & Zhou, Yu & Cheng, Lilai, 2024. "Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Kamali, Behnaz & Ziaei, Ali Naghi & Beheshti, Aliasghar & Farmani, Raziyeh, 2022. "An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    19. Dai, Bitao & Wu, Min & Wang, Longyun & Mou, Jianhong & Zhang, Chaojun & Guo, Shuhui & Tan, Suoyi & Lu, Xin, 2025. "Advancing vulnerability assessment in critical infrastructure systems through higher-order cycles and community structures," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    20. Zhu, Darui & Cheng, Wenji & Duan, Jiandong & Wang, Haifeng & Bai, Jing, 2023. "Identifying and assessing risk of cascading failure sequence in AC/DC hybrid power grid based on non-cooperative game theory," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.