IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007543.html
   My bibliography  Save this article

Responding of metro stations to upcoming floods: To close or to protect?

Author

Listed:
  • He, Renfei
  • Zhang, Limao
  • Tiong, Robert L.K.

Abstract

Floods have become a pressing challenge for urban metro systems. Facing an upcoming flood, closing all high-risk metro stations is a straightforward solution, but it can negatively affect people's travel. Conversely, protecting all high-risk stations to ensure their operation for smooth public transportation comes at a significant cost of flood control resources. Hence, given limited resources, it is necessary to devise an optimal closure-protection scheme to reduce the impacts caused by station closure while ensuring safety. For this issue, current practice mainly relies on the subjective experience of metro managers, lacking scientific and reasonable decision-making. To address this problem, this study proposes a novel optimization framework, implementing the entire process from metro network modeling, high-risk station identification to network performance evaluation and closure-protection optimization. A case study is conducted on the metro network in Shanghai, China, to verify the effectiveness of the proposed framework. The results demonstrate that compared with the best baseline strategy, the optimization framework can improve the metro network performance by 3.6 percent points with 100 units of resources under minor floods, and 6.2 percent points with 300 units of resources under moderate floods. Under major floods, however, closing all high-risk stations is more cost-effective.

Suggested Citation

  • He, Renfei & Zhang, Limao & Tiong, Robert L.K., 2025. "Responding of metro stations to upcoming floods: To close or to protect?," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007543
    DOI: 10.1016/j.ress.2024.110683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingjie Qi & Yangyang Meng & Xiaofei Zhao & Jianzhong Liu, 2022. "Resilience Assessment of an Urban Metro Complex Network: A Case Study of the Zhengzhou Metro," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    2. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Panakkal, Pranavesh & Padgett, Jamie Ellen, 2024. "More eyes on the road: Sensing flooded roads by fusing real-time observations from public data sources," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Liu, Kai & Zhu, Jiatong & Wang, Ming, 2021. "An event-based probabilistic model of disruption risk to urban metro networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 93-105.
    6. Zhang, Yanjie & Ayyub, Bilal M. & Saadat, Yalda & Zhang, Dongming & Huang, Hongwei, 2020. "A double-weighted vulnerability assessment model for metrorail transit networks and its application in Shanghai metro," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    7. Xiaohong Yin & Jiakun Wu, 2023. "Research on the Performance Recovery Strategy Model of Hangzhou Metro Network Based on Complex Network and Tenacity Theory," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    8. Yingying Xing & Jian Lu & Shengdi Chen & Sunanda Dissanayake, 2017. "Vulnerability analysis of urban rail transit based on complex network theory: a case study of Shanghai Metro," Public Transport, Springer, vol. 9(3), pages 501-525, October.
    9. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Modeling urban rail transit system resilience under natural disasters: A two-layer network framework based on link flow," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Fahad, Md Golam Rabbani & Nazari, Rouzbeh & Motamedi, M.H. & Karimi, Maryam, 2022. "A Decision-Making Framework Integrating Fluid and Solid Systems to Assess Resilience of Coastal Communities Experiencing Extreme Storm Events," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    13. Peter J. Kolesar, 1967. "A Branch and Bound Algorithm for the Knapsack Problem," Management Science, INFORMS, vol. 13(9), pages 723-735, May.
    14. Meng, Yangyang & Tian, Xiangliang & Li, Zhongwen & Zhou, Wei & Zhou, Zhijie & Zhong, Maohua, 2020. "Exploring node importance evolution of weighted complex networks in urban rail transit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    15. Harvey M. Salkin & Cornelis A. De Kluyver, 1975. "The knapsack problem: A survey," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(1), pages 127-144, March.
    16. He, Renfei & Zhang, Limao & Tiong, Robert L.K., 2023. "Flood risk assessment and mitigation for metro stations: An evidential-reasoning-based optimality approach considering uncertainty of subjective parameters," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    17. Kohli, Rajeev & Krishnamurti, Ramesh & Mirchandani, Prakash, 2004. "Average performance of greedy heuristics for the integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 154(1), pages 36-45, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Tan, Erlong & Liu, Bing & Guo, Cong & Ma, Xiaolei, 2024. "Restoration sequence optimization for vulnerable metro stations with limited budget: A case study of Beijing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    3. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    4. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Xu, Peng-Cheng & Lu, Qing-Chang & Feng, Tao & Li, Jing & Li, Gen & Xu, Xin, 2024. "Resilience analysis of metro stations integrating infrastructures and passengers," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Ting Chen & Jianxiao Ma & Zhenjun Zhu & Xiucheng Guo, 2023. "Evaluation Method for Node Importance of Urban Rail Network Considering Traffic Characteristics," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    7. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    8. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Cavalieri, Francesco & Franchin, Paolo & Giovinazzi, Sonia, 2023. "Multi-hazard assessment of increased flooding hazard due to earthquake-induced damage to the natural drainage system," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Huang, Kangzheng & Xie, Yun & Peng, Huihao & Li, Weibo, 2024. "Study on dynamic evolution characteristics of Wuhan metro network based on complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    11. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Modeling urban rail transit system resilience under natural disasters: A two-layer network framework based on link flow," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Zhang, Hui & Cui, Yu, 2024. "Understanding multimodal travel mobilities of dockless bike-sharing and metro: A multilayer network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    13. Daniel Vega & Sebastian Seriani & Álvaro Peña & Vinicius Minatogawa & Vicente Aprigliano & Bernardo Arredondo & Iván Bastías & Fernando Rodriguez-Rodriguez & Cristian Muñoz & Rodrigo Soto, 2025. "Accessibility Dilemma in Metro Stations: An Experimental Pilot Study Based on Passengers’ Emotional Experiences," Sustainability, MDPI, vol. 17(7), pages 1-21, March.
    14. Borowska-Stefańska, Marta & Bartnik, Adam & Dulebenets, Maxim A. & Kowalski, Michał & Sahebgharani, Alireza & Tomalski, Przemysław & Wiśniewski, Szymon, 2025. "Changes in the equilibrium of the urban transport system of a large city following an urban flood," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Kopsidas, Athanasios & Kepaptsoglou, Konstantinos, 2022. "Identification of critical stations in a Metro System: A substitute complex network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    16. Noguchi, Hiroki & Fuse, Masaaki, 2020. "Rethinking critical node problem for railway networks from the perspective of turn-back operation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    17. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    18. Ma, Min & Hu, Dawei & Chien, Steven I-Jy & Liu, Jie & Yang, Xing & Ma, Zhuanglin, 2022. "Evolution assessment of urban rail transit networks: A case study of Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    19. Dong, Shangjia & Gao, Xinyu & Mostafavi, Ali & Gao, Jianxi & Gangwal, Utkarsh, 2023. "Characterizing resilience of flood-disrupted dynamic transportation network through the lens of link reliability and stability," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Hong, Wei-Ting & Clifton, Geoffrey & Nelson, John D., 2022. "Rail transport system vulnerability analysis and policy implementation: Past progress and future directions," Transport Policy, Elsevier, vol. 128(C), pages 299-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.