IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics095183202300460x.html
   My bibliography  Save this article

Integration of the BBN-NK-Boltzmann model of tunnel fire network scenarios with coupled forward and reverse rendition analysis

Author

Listed:
  • Yang, Guan ding
  • Liu, Jie
  • Wang, Wan qing
  • Zhou, Hao wen
  • Wang, Xiao dong
  • Lu, Feng
  • Wan, Li ting
  • Teng, Liang yun
  • Zhao, Huyun

Abstract

One hundred tunnel fire cases worldwide were analyzed, and the key risk factors and maximum risk coupling forms were identified at the system level to improve tunnel safety. The BBN-NK model was introduced to positively analyze tunnel fires. Among the combined model, the BBN model of tunnel fire accident risk coupling was constructed to visualize the risk factor interactions, and the NK model was used for calculation to quantify the coupling degrees of various types of risk factors. Actual statistical data were used for inverse radar data comparison, and nonlinear curve fitting and residual analysis were performed to complete the correction and validation of the integrated BBN-NK model. The forward and reverse analysis deductions form a closed-loop process of the BBN-NK-Boltzmann model. The results show that controlling the coupling of four risk factors, namely human-machine-environment-management coupling, can effectively avoid tunnel fire accidents. Moreover, the typical adverse scenario evolution path and seven key nodes were found to be the key risks that must be considered during prevention and control. With the increase of the coupling factors, the frequency of tunnel fire accidents exhibit an increasing trend, and also conformed to the Boltzmann inversion curve equation.

Suggested Citation

  • Yang, Guan ding & Liu, Jie & Wang, Wan qing & Zhou, Hao wen & Wang, Xiao dong & Lu, Feng & Wan, Li ting & Teng, Liang yun & Zhao, Huyun, 2023. "Integration of the BBN-NK-Boltzmann model of tunnel fire network scenarios with coupled forward and reverse rendition analysis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s095183202300460x
    DOI: 10.1016/j.ress.2023.109546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300460X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    2. Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zio, Enrico & Yuan, Chengwei & Wang, Taorui & Jiang, Jianjun, 2022. "A Bayesian belief network framework for nuclear power plant human reliability analysis accounting for dependencies among performance shaping factors," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    4. Guo, Qian & Tang, Yibo, 2022. "Laboratory investigation of the spontaneous combustion characteristics and mechanisms of typical vegetable oils," Energy, Elsevier, vol. 241(C).
    5. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    7. Qiao, Wanguan, 2021. "Analysis and measurement of multifactor risk in underground coal mine accidents based on coupling theory," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    8. Zhu, Rong & Chen, Yuan & Peng, Weiwen & Ye, Zhi-Sheng, 2022. "Bayesian deep-learning for RUL prediction: An active learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Liu, Jie & Cai, Fei & Wang, Wanqing & Zhu, Haoyuan & Teng, Liangyun & Luo, Xuehua & Chen, Yi & Hao, Chenwei, 2025. "Research on scenario extrapolation and emergency decision-making for fire and explosion accidents at university laboratories based on BN-CBR," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Chen, Junjie & Liu, Pei & Lin, Borong & Zhou, Hao & Papachristos, George, 2025. "The diffusion of prefabrication technology and its potential for CO2 emissions reduction in China: A combined system dynamics and agent-based study," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    5. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    6. Feng Liu & Xingjun Huang & Longxiao Li, 2024. "The impact of green consumers on electric vehicle charging station diffusion based on complex network evolutionary game," Energy & Environment, , vol. 35(8), pages 3981-4002, December.
    7. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Renjie Zhang & Hsingwei Tai & Kuotai Cheng & Huizhong Dong & Wenhui Liu & Junjie Hou, 2022. "Carbon Emission Efficiency Network: Evolutionary Game and Sensitivity Analysis between Differentiated Efficiency Groups and Local Governments," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    9. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    10. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    11. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    13. Chen, Junhua & Chen, Zhiqun & Jiang, Wei & Guo, Hun & Chen, Longmiao, 2025. "A reliability-based design optimization strategy using quantile surrogates by improved PC-kriging," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    14. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    15. Yeh, Wei-Chang & Chu, Ta-Chung, 2018. "A novel multi-distribution multi-state flow network and its reliability optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 209-217.
    16. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    18. Yanhong Hang & Xue Lu & Xiaoming Li, 2025. "Spatiotemporal Differentiation Characteristics and Zoning of Cultivated Land System Resilience in the Songnen Plain," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    19. Zheng, Sen & Zhang, Jie & Jian, Lirong, 2024. "Green technology diffusion mechanism in China's aviation industry cluster based on complex network game model," Energy, Elsevier, vol. 313(C).
    20. Ruguo Fan & Rongkai Chen, 2022. "Promotion Policies for Electric Vehicle Diffusion in China Considering Dynamic Consumer Preferences: A Network-Based Evolutionary Analysis," IJERPH, MDPI, vol. 19(9), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s095183202300460x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.