IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v142y2015icp134-147.html
   My bibliography  Save this article

Condition-based prediction of time-dependent reliability in composites

Author

Listed:
  • Chiachío, Juan
  • Chiachío, Manuel
  • Sankararaman, Shankar
  • Saxena, Abhinav
  • Goebel, Kai

Abstract

This paper presents a reliability-based prediction methodology to obtain the remaining useful life of composite materials subjected to fatigue degradation. Degradation phenomena such as stiffness reduction and increase in matrix micro-cracks density are sequentially estimated through a Bayesian filtering framework that incorporates information from both multi-scale damage models and damage measurements, that are sequentially collected along the process. A set of damage states are further propagated forward in time by simulating the damage progression using the models in the absence of new damage measurements to estimate the time-dependent reliability of the composite material. As a key contribution, the estimation of the remaining useful life is obtained as a probability from the prediction of the time-dependent reliability, whose validity is formally proven using the axioms of Probability Logic. A case study is presented using multi-scale fatigue damage data from a cross-ply carbon-epoxy laminate.

Suggested Citation

  • Chiachío, Juan & Chiachío, Manuel & Sankararaman, Shankar & Saxena, Abhinav & Goebel, Kai, 2015. "Condition-based prediction of time-dependent reliability in composites," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 134-147.
  • Handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:134-147
    DOI: 10.1016/j.ress.2015.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    2. Saltelli, Andrea & Ratto, Marco & Tarantola, Stefano & Campolongo, Francesca, 2006. "Sensitivity analysis practices: Strategies for model-based inference," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1109-1125.
    3. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    4. Myötyri, E. & Pulkkinen, U. & Simola, K., 2006. "Application of stochastic filtering for lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 200-208.
    5. Tanizaki, Hisashi & Mariano, Roberto S., 1998. "Nonlinear and non-Gaussian state-space modeling with Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 263-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blancke, Olivier & Tahan, Antoine & Komljenovic, Dragan & Amyot, Normand & Lévesque, Mélanie & Hudon, Claude, 2018. "A holistic multi-failure mode prognosis approach for complex equipment," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 136-151.
    2. Chiachío, Juan & Jalón, María L. & Chiachío, Manuel & Kolios, Athanasios, 2020. "A Markov chains prognostics framework for complex degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    3. Chiachío, Juan & Chiachío, Manuel & Prescott, Darren & Andrews, John, 2019. "A knowledge-based prognostics framework for railway track geometry degradation," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 127-141.
    4. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
    5. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.
    6. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    8. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    2. Chiachío, Manuel & Chiachío, Juan & Sankararaman, Shankar & Goebel, Kai & Andrews, John, 2017. "A new algorithm for prognostics using Subset Simulation," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 189-199.
    3. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    4. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    5. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    6. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    7. Cadini, F. & Zio, E. & Avram, D., 2009. "Model-based Monte Carlo state estimation for condition-based component replacement," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 752-758.
    8. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer, 2012. "Adaptive condition-based maintenance decision framework for deteriorating systems operating under variable environment and uncertain condition monitoring," Journal of Risk and Reliability, , vol. 226(6), pages 602-623, December.
    9. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    10. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    11. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    12. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    13. Miller, J. Isaac & Park, Joon Y., 2005. "How They Interact to Generate Persistency in Memory," Working Papers 2005-01, Rice University, Department of Economics.
    14. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    15. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    16. Rui Zhang & Taotao Chen & Daocai Chi, 2020. "Global Sensitivity Analysis of the Standardized Precipitation Evapotranspiration Index at Different Time Scales in Jilin Province, China," Sustainability, MDPI, vol. 12(5), pages 1-19, February.
    17. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Pradeep Kundu & Makarand S.Kulkarni & Ashish K.Darpe, 2023. "A hybrid prognosis approach for life prediction of gears subjected to progressive pitting failure mode," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1325-1346, March.
    20. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:142:y:2015:i:c:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.