IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v85y2014icp42-53.html
   My bibliography  Save this article

Environmental evaluation of plastic waste management scenarios

Author

Listed:
  • Rigamonti, L.
  • Grosso, M.
  • Møller, J.
  • Martinez Sanchez, V.
  • Magnani, S.
  • Christensen, T.H.

Abstract

The management of the plastic fraction is one of the most debated issues in the discussion on integrated municipal solid waste systems. Both material and energy recovery can be performed on such a waste stream, and different separate collection schemes can be implemented. The aim of the paper is to contribute to the debate, based on the analysis of different plastic waste recovery routes. Five scenarios were defined and modelled with a life cycle assessment approach using the EASEWASTE model. In the baseline scenario (P0) the plastic is treated as residual waste and routed partly to incineration with energy recovery and partly to mechanical biological treatment. A range of potential improvements in plastic management is introduced in the other four scenarios (P1–P4). P1 includes a source separation of clean plastic fractions for material recycling, whereas P2 a source separation of mixed plastic fraction for mechanical upgrading and separation into specific polymer types, with the residual plastic fraction being down-cycled and used for “wood items”. In P3 a mixed plastic fraction is source separated together with metals in a “dry bin”. In P4 plastic is mechanically separated from residual waste prior to incineration.

Suggested Citation

  • Rigamonti, L. & Grosso, M. & Møller, J. & Martinez Sanchez, V. & Magnani, S. & Christensen, T.H., 2014. "Environmental evaluation of plastic waste management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 42-53.
  • Handle: RePEc:eee:recore:v:85:y:2014:i:c:p:42-53
    DOI: 10.1016/j.resconrec.2013.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazarevic, David & Aoustin, Emmanuelle & Buclet, Nicolas & Brandt, Nils, 2010. "Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 246-259.
    2. David Lazarevic & Emmanuelle Aoustin & Nicolas Buclet & Nils Brandt, 2010. "Plastic Waste Management in the context of a European recycling society," Post-Print halshs-00584531, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    2. Mayanti, Bening & Helo, Petri, 2022. "Closed-loop supply chain potential of agricultural plastic waste: Economic and environmental assessment of bale wrap waste recycling in Finland," International Journal of Production Economics, Elsevier, vol. 244(C).
    3. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    4. Chidambarampadmavathy, Karthigeyan & Karthikeyan, Obulisamy Parthiba & Heimann, Kirsten, 2017. "Sustainable bio-plastic production through landfill methane recycling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 555-562.
    5. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    6. Mirkarimi, S.M.R. & Bensaid, S. & Chiaramonti, D., 2022. "Conversion of mixed waste plastic into fuel for diesel engines through pyrolysis process: A review," Applied Energy, Elsevier, vol. 327(C).
    7. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.
    8. Antoine Beylot & Antoine Hochar & Pascale Michel & Marie Descat & Yannick Ménard & Jacques Villeneuve, 2018. "Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1016-1026, October.
    9. Piya Kerdlap & Aloisius Rabata Purnama & Jonathan Sze Choong Low & Daren Zong Loong Tan & Claire Y. Barlow & Seeram Ramakrishna, 2022. "Comparing the environmental performance of distributed versus centralized plastic recycling systems: Applying hybrid simulation modeling to life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 252-271, February.
    10. Monica Fait & Dirk Meissner & Gian Luca Gregori & Filippo Monge & Valentina Cillo, 2022. "To act or to react? The role of responsiveness in corporate social performance disclosure in preventing plastic pollution in the travel and tourism sector," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(6), pages 2065-2082, November.
    11. Meng, Ting & Klepacka, Anna M. & Florkowski, Wojciech J. & Braman, Kristine, 2015. "What drives an environmental horticultural firm to start recycling plastics? Results of a Georgia survey," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 1-8.
    12. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    13. Marie Kampmann Eriksen & Anders Damgaard & Alessio Boldrin & Thomas Fruergaard Astrup, 2019. "Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 156-168, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turner, David A. & Williams, Ian D. & Kemp, Simon, 2015. "Greenhouse gas emission factors for recycling of source-segregated waste materials," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 186-197.
    2. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    3. Mayanti, Bening & Helo, Petri, 2022. "Closed-loop supply chain potential of agricultural plastic waste: Economic and environmental assessment of bale wrap waste recycling in Finland," International Journal of Production Economics, Elsevier, vol. 244(C).
    4. Huysman, Sofie & Debaveye, Sam & Schaubroeck, Thomas & Meester, Steven De & Ardente, Fulvio & Mathieux, Fabrice & Dewulf, Jo, 2015. "The recyclability benefit rate of closed-loop and open-loop systems: A case study on plastic recycling in Flanders," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 53-60.
    5. Väntsi, Olli & Kärki, Timo, 2015. "Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 38-48.
    6. Beigbeder, Joana & Perrin, Didier & Mascaro, Jean-François & Lopez-Cuesta, José-Marie, 2013. "Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 105-114.
    7. Jinsong Li & Kenji Takeuchi, 2023. "Import ban and clean air: estimating the effect of China’s waste import ban on ozone pollution," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(4), pages 471-492, October.
    8. Simic, Vladimir & Dimitrijevic, Branka, 2013. "Risk explicit interval linear programming model for long-term planning of vehicle recycling in the EU legislative context under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 197-210.
    9. Kerstens, S.M. & Priyanka, A. & van Dijk, K.C. & De Ruijter, F.J. & Leusbrock, I. & Zeeman, G., 2016. "Potential demand for recoverable resources from Indonesian wastewater and solid waste," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 16-29.
    10. Ferrão, Paulo & Ribeiro, Paulo & Rodrigues, João & Marques, Alexandra & Preto, Miguel & Amaral, Miguel & Domingos, Tiago & Lopes, Ana & Costa, e Inês, 2014. "Environmental, economic and social costs and benefits of a packaging waste management system: A Portuguese case study," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 67-78.
    11. Lausselet, Carine & Cherubini, Francesco & Oreggioni, Gabriel David & del Alamo Serrano, Gonzalo & Becidan, Michael & Hu, Xiangping & Rørstad, Per Kr. & Strømman, Anders Hammer, 2017. "Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 50-61.
    12. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    13. Markus Gall & Andrea Schweighuber & Wolfgang Buchberger & Reinhold W. Lang, 2020. "Plastic Bottle Cap Recycling—Characterization of Recyclate Composition and Opportunities for Design for Circularity," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    14. Miguel Vigil & Maria Pedrosa-Laza & JV Alvarez Cabal & Francisco Ortega-Fernández, 2020. "Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment," Sustainability, MDPI, vol. 12(17), pages 1-18, September.
    15. Benedetta Cotta, 0. "What goes around, comes around? Access and allocation problems in Global North–South waste trade," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 0, pages 1-15.
    16. Riaz Ahmad & Gengyuan Liu & Remo Santagata & Marco Casazza & Jingyan Xue & Kifayatullah Khan & Javed Nawab & Sergio Ulgiati & Massimiliano Lega, 2019. "LCA of Hospital Solid Waste Treatment Alternatives in a Developing Country: The Case of District Swat, Pakistan," Sustainability, MDPI, vol. 11(13), pages 1-20, June.
    17. Helén Williams & Fredrik Wikström & Katarina Wetter-Edman & Per Kristensson, 2018. "Decisions on Recycling or Waste: How Packaging Functions Affect the Fate of Used Packaging in Selected Swedish Households," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    18. Jonas Keller & Carla Scagnetti & Stefan Albrecht, 2022. "The Relevance of Recyclability for the Life Cycle Assessment of Packaging Based on Design for Life Cycle," Sustainability, MDPI, vol. 14(7), pages 1-13, March.
    19. Benedetta Cotta, 2020. "What goes around, comes around? Access and allocation problems in Global North–South waste trade," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 20(2), pages 255-269, June.
    20. Wang, Xiaotong & Lu, Meijun & Mao, Wei & Ouyang, Jinlong & Zhou, Bo & Yang, Yunkai, 2015. "Improving benefit-cost analysis to overcome financing difficulties in promoting energy-efficient renovation of existing residential buildings in China," Applied Energy, Elsevier, vol. 141(C), pages 119-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:85:y:2014:i:c:p:42-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.