IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v23y2019i1p156-168.html
   My bibliography  Save this article

Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste

Author

Listed:
  • Marie Kampmann Eriksen
  • Anders Damgaard
  • Alessio Boldrin
  • Thomas Fruergaard Astrup

Abstract

Plastic recycling is promoted in the transition toward a circular economy and a closed plastic loop, typically using mass‐based recycling targets. Plastic from household waste (HHW) is contaminated and heterogeneous, and recycled plastic from HHW often has a limited application range, due to reduced quality. To correctly assess the ability to close plastic loops via recycling, both plastic quantities and qualities need to be evaluated. This study defines a circularity potential representing the ability of a recovery system to close material loops assuming steady‐state market conditions. Based on an average plastic waste composition including impurities, 84 recovery scenarios representing a wide range of sorting schemes, source‐separation efficiencies, and material recovery facility (MRF) configurations and performances were assessed. The qualities of the recovered fractions were assessed based on contamination and the circularity potential calculated for each scenario in a European context. Across all scenarios, 17% to 100% of the generated plastic mass could be recovered, with higher source‐separation and MRF efficiencies leading to higher recovery. Including quality, however, at best 55% of the generated plastic was suitable for recycling due to contamination. Source‐separation, a high number of target fractions, and efficient MRF recovery were found to be critical. The circularity potential illustrated that less than 42% of the plastic loop can be closed with current technology and raw material demands. Hence, Europe is still far from able to close the plastic loop. When transitioning toward a circular economy, the focus should be on limiting impurities and losses through product design, technology improvement, and more targeted plastic waste management.

Suggested Citation

  • Marie Kampmann Eriksen & Anders Damgaard & Alessio Boldrin & Thomas Fruergaard Astrup, 2019. "Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 156-168, February.
  • Handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:156-168
    DOI: 10.1111/jiec.12822
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12822
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luijsterburg, Benny & Goossens, Han, 2014. "Assessment of plastic packaging waste: Material origin, methods, properties," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 88-97.
    2. Huysman, Sofie & De Schaepmeester, Jonas & Ragaert, Kim & Dewulf, Jo & De Meester, Steven, 2017. "Performance indicators for a circular economy: A case study on post-industrial plastic waste," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 46-54.
    3. Johann Fellner & Jakob Lederer & Christoph Scharff & David Laner, 2017. "Present Potentials and Limitations of a Circular Economy with Respect to Primary Raw Material Demand," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 494-496, June.
    4. Rigamonti, L. & Grosso, M. & Møller, J. & Martinez Sanchez, V. & Magnani, S. & Christensen, T.H., 2014. "Environmental evaluation of plastic waste management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 85(C), pages 42-53.
    5. Shen, Li & Worrell, Ernst & Patel, Martin K., 2010. "Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling," Resources, Conservation & Recycling, Elsevier, vol. 55(1), pages 34-52.
    6. Luis Delgado Sancho & Ana Sofia Catarino & Peter Eder & Donald Litten & Zheng Luo & Alejandro Villanueva Krzyzaniak, 2009. "End-of-Waste Criteria," JRC Research Reports JRC53238, Joint Research Centre.
    7. Melanie Haupt & Carl Vadenbo & Stefanie Hellweg, 2017. "Do We Have the Right Performance Indicators for the Circular Economy?: Insight into the Swiss Waste Management System," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 615-627, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "Dynamic linkages between international oil price, plastic stock index and recycle plastic markets in China," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 167-179.
    2. Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
    3. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    4. Daniel Maga & Markus Hiebel & Venkat Aryan, 2019. "A Comparative Life Cycle Assessment of Meat Trays Made of Various Packaging Materials," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    5. Confente, Ilenia & Scarpi, Daniele & Russo, Ivan, 2020. "Marketing a new generation of bio-plastics products for a circular economy: The role of green self-identity, self-congruity, and perceived value," Journal of Business Research, Elsevier, vol. 112(C), pages 431-439.
    6. Francesco Colelli & Edoardo Croci, 2021. "Assessment of environmental and economic benefits of packaging waste system in Italy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 37-58.
    7. Katarzyna Bernat, 2023. "Post-Consumer Plastic Waste Management: From Collection and Sortation to Mechanical Recycling," Energies, MDPI, vol. 16(8), pages 1-14, April.
    8. Felix Carl Schultz & Robert Jaroslav Reinhardt, 2022. "Facilitating systemic eco‐innovation to pave the way for a circular economy: A qualitative‐empirical study on barriers and drivers in the European polyurethane industry," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1646-1675, October.
    9. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).
    10. Farrukh, Amna & Mathrani, Sanjay & Sajjad, Aymen, 2023. "Green-lean-six sigma practices and supporting factors for transitioning towards circular economy: A natural resource and intellectual capital-based view," Resources Policy, Elsevier, vol. 84(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayanti, Bening & Helo, Petri, 2022. "Closed-loop supply chain potential of agricultural plastic waste: Economic and environmental assessment of bale wrap waste recycling in Finland," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Meng, Ting & Klepacka, Anna M. & Florkowski, Wojciech J. & Braman, Kristine, 2015. "What drives an environmental horticultural firm to start recycling plastics? Results of a Georgia survey," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 1-8.
    3. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    4. Rita Lopes & Rui Santos & Nuno Videira & Paula Antunes, 2021. "Co-creating a Vision and Roadmap for Circular Economy in the Food and Beverages Packaging Sector," Circular Economy and Sustainability,, Springer.
    5. Mario Testa & Ornella Malandrino & Maria Rosaria Sessa & Stefania Supino & Daniela Sica, 2017. "Long-Term Sustainability from the Perspective of Cullet Recycling in the Container Glass Industry: Evidence from Italy," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
    6. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    7. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Graziela Darla Araujo Galvão & Steve Evans & Paulo Sergio Scoleze Ferrer & Marly Monteiro de Carvalho, 2022. "Circular business model: Breaking down barriers towards sustainable development," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1504-1524, May.
    9. Halkos, George & Aslanidis, Panagiotis-Stavros, 2024. "Reviewing environmental aspects under the scope of ESG," MPRA Paper 120298, University Library of Munich, Germany.
    10. Fabio A. Madau & Brunella Arru & Roberto Furesi & Pietro Pulina, 2020. "Insect Farming for Feed and Food Production from a Circular Business Model Perspective," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    11. Antoine Beylot & Antoine Hochar & Pascale Michel & Marie Descat & Yannick Ménard & Jacques Villeneuve, 2018. "Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1016-1026, October.
    12. Allacker, K. & Mathieux, F. & Manfredi, S. & Pelletier, N. & De Camillis, C. & Ardente, F. & Pant, R., 2014. "Allocation solutions for secondary material production and end of life recovery: Proposals for product policy initiatives," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 1-12.
    13. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    14. Dewick, Paul & Maytorena-Sanchez, Eunice & Winch, Graham, 2019. "Regulation and regenerative eco-innovation: the case of extracted materials in the UK," Ecological Economics, Elsevier, vol. 160(C), pages 38-51.
    15. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    16. Georgios Lanaras-Mamounis & Anastasios Kipritsis & Thomas A. Tsalis & Konstantinos Ι. Vatalis & Ioannis E. Nikolaou, 2022. "A Framework for Assessing the Contribution of Firms to Circular Economy: a Triple-Level Approach," Circular Economy and Sustainability,, Springer.
    17. Francisco Javier Villegas Pinuer & Joan Llonch Andreu & Pilar López Belbeze & Leslier Valenzuela-Fernández, 2021. "Waste Management. The Disconnection between Normative and SMEs Reality," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    18. Rossana Bellopede & Lorena Zichella & Paola Marini, 2020. "Glass Waste 3 : A Preliminary Study for a New Industrial Recovery Processing," Sustainability, MDPI, vol. 12(5), pages 1-11, March.
    19. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    20. Elisa Chioatto & Paolo Sospiro, 2023. "Transition from waste management to circular economy: the European Union roadmap," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 249-276, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:23:y:2019:i:1:p:156-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.