IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v82y2014icp8-20.html
   My bibliography  Save this article

Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach

Author

Listed:
  • Egilmez, Gokhan
  • Kucukvar, Murat
  • Tatari, Omer
  • Bhutta, M. Khurrum S.

Abstract

Due to the fact that food manufacturing is one of the major drivers of the global environmental issues, there is a strong need to focus on sustainable manufacturing toward achieving long-term sustainability goals in food production of the United States. In this regard, current study assessed the direct and indirect environmental footprint of 33 U.S. food manufacturing sectors by using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. Then, a non-parametric mathematical optimization tool, namely Data Envelopment Analysis (DEA), is utilized to benchmark the sustainability performance of food manufacturing sectors by using the results of the EIO-LCA model. Next, sustainability performance indices (SPIs), rankings, target improvements, and sensitivity of environmental impact indicators are presented. The average SPI score of U.S. food manufacturing sectors is found as 0.76. In addition, 19 out of 33 food sectors are found as inefficient where an average of 45–71% reduction is indicated for various environmental impact categories. Analysis results also indicate that supply chains of food manufacturing sectors are heavily responsible for the impacts with over 80% shares for energy, water and carbon footprint, fishery and grazing categories. Especially, animal (except poultry) slaughtering, rendering and processing sector is found as the most dominant sector in most of the impact categories (ranked as 2nd in fishery and forest land). Sensitivity analysis indicated that forest land footprint is found to be the most sensitive environmental indicator on the overall sustainability performance of food manufacturing sectors.

Suggested Citation

  • Egilmez, Gokhan & Kucukvar, Murat & Tatari, Omer & Bhutta, M. Khurrum S., 2014. "Supply chain sustainability assessment of the U.S. food manufacturing sectors: A life cycle-based frontier approach," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 8-20.
  • Handle: RePEc:eee:recore:v:82:y:2014:i:c:p:8-20
    DOI: 10.1016/j.resconrec.2013.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344913002152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2013.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iribarren, Diego & Moreira, Maria Teresa & Feijoo, Gumersindo, 2010. "Life Cycle Assessment of fresh and canned mussel processing and consumption in Galicia (NW Spain)," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 106-117.
    2. Kortelainen, Mika, 2008. "Dynamic environmental performance analysis: A Malmquist index approach," Ecological Economics, Elsevier, vol. 64(4), pages 701-715, February.
    3. Satish Joshi, 1999. "Product Environmental Life‐Cycle Assessment Using Input‐Output Techniques," Journal of Industrial Ecology, Yale University, vol. 3(2‐3), pages 95-120, April.
    4. Calderón, Luis Alberto & Iglesias, Loreto & Laca, Adriana & Herrero, Mónica & Díaz, Mario, 2010. "The utility of Life Cycle Assessment in the ready meal food industry," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1196-1207.
    5. Gjalt Huppes & Masanobu Ishikawa, 2005. "A Framework for Quantified Eco‐efficiency Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 25-41, October.
    6. Gjalt Huppes & Arjan de Koning & Sangwon Suh & Reinout Heijungs & Lauran van Oers & Per Nielsen & Jeroen B. Guinée, 2006. "Environmental Impacts of Consumption in the European Union:High‐Resolution Input‐Output Tables with Detailed Environmental Extensions," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 129-146, July.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    9. González-García, S. & Hospido, A. & Feijoo, G. & Moreira, M.T., 2010. "Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 923-930.
    10. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    11. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    12. Hospido, A. & Vazquez, M.E. & Cuevas, A. & Feijoo, G. & Moreira, M.T., 2006. "Environmental assessment of canned tuna manufacture with a life-cycle perspective," Resources, Conservation & Recycling, Elsevier, vol. 47(1), pages 56-72.
    13. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    14. Talluri, Srinivas & Paul Yoon, K., 2000. "A cone-ratio DEA approach for AMT justification," International Journal of Production Economics, Elsevier, vol. 66(2), pages 119-129, June.
    15. Arnold Tukker & Sandra Bausch-Goldbohm & Marieke Verheijden & Arjan de Koning & René Kleijn & Oliver Wolf & Ignacio Pérez Domínguez, 2009. "Environmental Impacts of Diet Changes in the EU," JRC Research Reports JRC50544, Joint Research Centre.
    16. Kucukvar, Murat & Tatari, Omer, 2011. "A comprehensive life cycle analysis of cofiring algae in a coal power plant as a solution for achieving sustainable energy," Energy, Elsevier, vol. 36(11), pages 6352-6357.
    17. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    2. Murat Kucukvar & Khalel Ahmed Alawi & Galal M. Abdella & Muhammet Enis Bulak & Nuri C. Onat & Melih Bulu & Murat Yalçıntaş, 2021. "A frontier‐based managerial approach for relative sustainability performance assessment of the world's airports," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 89-107, January.
    3. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    4. Hiam Serhan & Gwenola Yannou-Le Bris, 2021. "The engineering of food with sustainable development goals:policies, curriculums, business models, and practices," Post-Print hal-02919820, HAL.
    5. Rachit Kumar Sharma & Geo Raju & Prabir Sarkar & Harpreet Singh & Ekta Singla, 2022. "Comparing the environmental impacts of paracetamol dosage forms using life cycle assessment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12446-12466, October.
    6. Bidhan Bhuson Roy & Qingshi Tu, 2022. "A review of system dynamics modeling for the sustainability assessment of biorefineries," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1450-1459, August.
    7. Tantiwatthanaphanich, Thanapan & Shao, Xuan & Huang, Liqiao & Yoshida, Yoshikuni & Long, Yin, 2022. "Evaluating carbon footprint embodied in Japanese food consumption based on global supply chain," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 56-65.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    2. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    3. Bonfiglio, Andrea & Arzeni, Andrea & Bodini, Antonella, 2017. "Assessing eco-efficiency of arable farms in rural areas," Agricultural Systems, Elsevier, vol. 151(C), pages 114-125.
    4. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    5. Yongyoon Suh & Hyeonju Seol & Hyerim Bae & Yongtae Park, 2014. "Eco-efficiency Based on Social Performance and its Relationship with Financial Performance," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 909-919, December.
    6. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    7. Mariam Camarero & Juana Castillo & Andrés Picazo-Tadeo & Cecilio Tamarit, 2013. "Eco-Efficiency and Convergence in OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 87-106, May.
    8. Andrés J. Picazo-Tadeo & Juana Castillo & Mercedes Beltrán-Esteve, 2013. "A dynamic approach to measuring ecological-economic performance with directional distance functions: greenhouse gas emissions in the European Union," Working Papers 1304, Department of Applied Economics II, Universidad de Valencia.
    9. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    10. Ilton Leal & Pauli Almada Garcia & Márcio Almeida D’Agosto, 2012. "A data envelopment analysis approach to choose transport modes based on eco-efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(5), pages 767-781, October.
    11. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    12. Kuosmanen, Timo & Kuosmanen, Natalia, 2009. "How not to measure sustainable value (and how one might)," Ecological Economics, Elsevier, vol. 69(2), pages 235-243, December.
    13. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    14. Pérez, Karen & González-Araya, Marcela C. & Iriarte, Alfredo, 2017. "Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes," Energy Economics, Elsevier, vol. 66(C), pages 290-302.
    15. Jens J. Krüger & Moritz Tarach, 2022. "Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 867-898, April.
    16. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2019. "Is Social Capital Green? Cultural Features and Environmental Performance in the European Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(3), pages 795-822, March.
    17. Victor MOUTINHO & Margarita ROBAINA & Pedro MACEDO, 2018. "Economic-environmental efficiency of European agriculture - a generalized maximum entropy approach," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 423-435.
    18. Eder, Andreas & Salhofer, Klaus & Scheichel, Eva, 2021. "Land tenure, soil conservation, and farm performance: An eco-efficiency analysis of Austrian crop farms," Ecological Economics, Elsevier, vol. 180(C).
    19. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    20. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:82:y:2014:i:c:p:8-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.