IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v121y2017icp51-55.html
   My bibliography  Save this article

Opportunities and barriers to demand response in China

Author

Listed:
  • Yang, Chi-Jen

Abstract

China is quickly installing advanced metering infrastructure (AMI), which could provide tremendous opportunities in developing and utilizing demand response resources. Demand response may potentially create a profitable industry and contribute to efficiency improvement, cost reduction, and pollution mitigation of the entire electricity sector. However, China lags behind the developed world in utilizing demand response. Institutional barriers, including the lack of competitive electricity market and the resistance by the state grid corporations, are preventing the commercialization of demand response. In order to fully realize the potential of smart grid, China needs to push forward the reforms toward establishing an open access electricity market so the pollution-free demand response resources may compete with power generators on leveled field.

Suggested Citation

  • Yang, Chi-Jen, 2017. "Opportunities and barriers to demand response in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 51-55.
  • Handle: RePEc:eee:recore:v:121:y:2017:i:c:p:51-55
    DOI: 10.1016/j.resconrec.2015.11.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915301427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.11.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadler, Ingo, 2008. "Power grid balancing of energy systems with high renewable energy penetration by demand response," Utilities Policy, Elsevier, vol. 16(2), pages 90-98, June.
    2. Wang, Jianhui & Bloyd, Cary N. & Hu, Zhaoguang & Tan, Zhongfu, 2010. "Demand response in China," Energy, Elsevier, vol. 35(4), pages 1592-1597.
    3. Yu, Yongzhen, 2012. "How to fit demand side management (DSM) into current Chinese electricity system reform?," Energy Economics, Elsevier, vol. 34(2), pages 549-557.
    4. Xu, Shaofeng & Chen, Wenying, 2006. "The reform of electricity power sector in the PR of China," Energy Policy, Elsevier, vol. 34(16), pages 2455-2465, November.
    5. Hu, Zheng & Kim, Jin-ho & Wang, Jianhui & Byrne, John, 2015. "Review of dynamic pricing programs in the U.S. and Europe: Status quo and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 743-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chonghui & Wang, Zhen & Su, Weihua & Dalia, Streimikiene, 2024. "Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model," Applied Energy, Elsevier, vol. 353(PB).
    2. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    2. Zhang, Yin-Fang & Gao, Ping, 2016. "Integrating environmental considerations into economic regulation of China's electricity sector," Utilities Policy, Elsevier, vol. 38(C), pages 62-71.
    3. Peter Warren, 2018. "Demand-side policy: Global evidence base and implementation patterns," Energy & Environment, , vol. 29(5), pages 706-731, August.
    4. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    5. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    6. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    7. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    8. Ming, Zeng & Song, Xue & Mingjuan, Ma & Lingyun, Li & Min, Cheng & Yuejin, Wang, 2013. "Historical review of demand side management in China: Management content, operation mode, results assessment and relative incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 470-482.
    9. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
    10. Bell, William Paul & Zheng, Xuemei, 2018. "Inclusive growth and climate change adaptation and mitigation in Australia and China : Removing barriers to solving wicked problems," MPRA Paper 84509, University Library of Munich, Germany.
    11. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    12. Kahrl, Fredrich & Williams, Jim & Jianhua, Ding & Junfeng, Hu, 2011. "Challenges to China's transition to a low carbon electricity system," Energy Policy, Elsevier, vol. 39(7), pages 4032-4041, July.
    13. Xin-Rui Liu & Si-Luo Sun & Qiu-Ye Sun & Wei-Yang Zhong, 2020. "Time-Scale Economic Dispatch of Electricity-Heat Integrated System Based on Users’ Thermal Comfort," Energies, MDPI, vol. 13(20), pages 1-27, October.
    14. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    15. Li, X. & Hubacek, K. & Siu, Y.L., 2012. "Wind power in China – Dream or reality?," Energy, Elsevier, vol. 37(1), pages 51-60.
    16. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    17. Krunalkumar Thummar & Roger Abang & Katharina Menzel & Matheus Theodorus de Groot, 2022. "Coupling a Chlor-Alkali Membrane Electrolyzer Cell to a Wind Energy Source: Dynamic Modeling and Simulations," Energies, MDPI, vol. 15(2), pages 1-26, January.
    18. Robert Cruickshank & Gregor Henze & Rajagopalan Balaji & Bri-Mathias Hodge & Anthony Florita, 2019. "Quantifying the Opportunity Limits of Automatic Residential Electric Load Shaping," Energies, MDPI, vol. 12(17), pages 1-19, August.
    19. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    20. Teng, Fei & Wang, Xin & Zhiqiang, LV, 2014. "Introducing the emissions trading system to China’s electricity sector: Challenges and opportunities," Energy Policy, Elsevier, vol. 75(C), pages 39-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:121:y:2017:i:c:p:51-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.