IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v263y2023ics0925527323001950.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Blockchain-enabled supply chain traceability – How wide? How deep?

Author

Listed:
  • Ahmed, Wafaa A.H.
  • MacCarthy, Bart L.

Abstract

Supply chain traceability (SCT) has become increasingly important for many reasons, including regulatory compliance, quality assurance, product counterfeiting, sustainability, and customer concerns on the provenance and authenticity of products. The complexity of globally dispersed supply chains is a major challenge for SCT. Blockchain technology's ability to support information sharing in a distributed network and create an immutable and traceable digital record of historical transactions makes it an attractive option for SCT. However, a major challenge persists – defining the scope of a blockchain-enabled SCT solution in terms of the number stages of the supply chain encompassed and the granularity of information captured at each supply chain stage. We analyze multiple cross-industry case studies and conduct an expert executive workshop to identify empirically the motivations and contextual factors influencing the diversity in the scope of traceability targeted by different organizations. We present a new evidence-based framework to define the scope of SCT depending on the motivations for and purpose of traceability. The framework specifies five identification categories and five levels of granularity of information within each category to inform and support decision-making on the types of data to capture across the supply chain for effective and scalable deployment of blockchain-enabled SCT solutions. The study highlights the need for more research examining the optimal level of traceability for different industries and supply chain configurations.

Suggested Citation

  • Ahmed, Wafaa A.H. & MacCarthy, Bart L., 2023. "Blockchain-enabled supply chain traceability – How wide? How deep?," International Journal of Production Economics, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:proeco:v:263:y:2023:i:c:s0925527323001950
    DOI: 10.1016/j.ijpe.2023.108963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527323001950
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2023.108963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonella Moretto & Laura Macchion, 2022. "Drivers, barriers and supply chain variables influencing the adoption of the blockchain to support traceability along fashion supply chains," Operations Management Research, Springer, vol. 15(3), pages 1470-1489, December.
    2. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    3. Horst Treiblmaier, 2020. "Toward More Rigorous Blockchain Research: Recommendations for Writing Blockchain Case Studies," Progress in IS, in: Horst Treiblmaier & Trevor Clohessy (ed.), Blockchain and Distributed Ledger Technology Use Cases, pages 1-31, Springer.
    4. Juan José Bullón Pérez & Araceli Queiruga-Dios & Víctor Gayoso Martínez & Ángel Martín del Rey, 2020. "Traceability of Ready-to-Wear Clothing through Blockchain Technology," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    5. Gabriella M. Hastig & ManMohan S. Sodhi, 2020. "Blockchain for Supply Chain Traceability: Business Requirements and Critical Success Factors," Production and Operations Management, Production and Operations Management Society, vol. 29(4), pages 935-954, April.
    6. Fran Casino & Venetis Kanakaris & Thomas K. Dasaklis & Socrates Moschuris & Spiros Stachtiaris & Maria Pagoni & Nikolaos P. Rachaniotis, 2021. "Blockchain-based food supply chain traceability: a case study in the dairy sector," International Journal of Production Research, Taylor & Francis Journals, vol. 59(19), pages 5758-5770, October.
    7. Kshetri, Nir, 2018. "1 Blockchain’s roles in meeting key supply chain management objectives," International Journal of Information Management, Elsevier, vol. 39(C), pages 80-89.
    8. Schyga, Jakob & Hinckeldeyn, Johannes & Kreutzfeldt, Jochen, 2019. "Prototype for a permissioned blockchain in aircraft MRO," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg Int, volume 27, pages 469-505, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Aiello, Giuseppe & Enea, Mario & Muriana, Cinzia, 2015. "The expected value of the traceability information," European Journal of Operational Research, Elsevier, vol. 244(1), pages 176-186.
    10. Vincent Carrières & Andrée-Anne Lemieux & Manuele Margni & Robert Pellerin & Sylvain Cariou, 2022. "Measuring the Value of Blockchain Traceability in Supporting LCA for Textile Products," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    11. Jen-Hung Tseng & Yen-Chih Liao & Bin Chong & Shih-wei Liao, 2018. "Governance on the Drug Supply Chain via Gcoin Blockchain," IJERPH, MDPI, vol. 15(6), pages 1-8, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davies, Jennifer & Sharifi, Hossein & Lyons, Andrew & Forster, Rick & Elsayed, Omar Khaled Shokry Mohamed, 2024. "Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    2. Guan, Zhimin & Yu, Tianyang & Dong, Jingyang & Zhang, Jun, 2024. "Impact of consumers’ anticipated regret on brand owners’ blockchain adoption in the presence of a secondhand market," International Journal of Production Economics, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    2. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    3. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Atanu Chaudhuri & Manjot Singh Bhatia & Yasanur Kayikci & Kiran J. Fernandes & Samuel Fosso-Wamba, 2023. "Improving social sustainability and reducing supply chain risks through blockchain implementation: role of outcome and behavioural mechanisms," Annals of Operations Research, Springer, vol. 327(1), pages 401-433, August.
    5. Liu, Shuai & Hua, Guowei & Kang, Yuxuan & Edwin Cheng, T.C. & Xu, Yadong, 2022. "What value does blockchain bring to the imported fresh food supply chain?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    6. Davies, Jennifer & Sharifi, Hossein & Lyons, Andrew & Forster, Rick & Elsayed, Omar Khaled Shokry Mohamed, 2024. "Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    7. Pattanayak, Sirsha & Ramkumar, M. & Goswami, Mohit & Rana, Nripendra P., 2024. "Blockchain technology and supply chain performance: The role of trust and relational capabilities," International Journal of Production Economics, Elsevier, vol. 271(C).
    8. Latan, Hengky & Lopes de Sousa Jabbour, Ana Beatriz & Sarkis, Joseph & Chiappetta Jabbour, Charbel Jose & Ali, Murad, 2024. "The nexus of supply chain performance and blockchain technology in the digitalization era: Insights from a fast-growing economy," Journal of Business Research, Elsevier, vol. 172(C).
    9. Yu Gong & Shenghao Xie & Deepak Arunachalam & Jiang Duan & Jianli Luo, 2022. "Blockchain‐based recycling and its impact on recycling performance: A network theory perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3717-3741, December.
    10. Arunmozhi, Manimuthu & Venkatesh, V.G. & Arisian, Sobhan & Shi, Yangyan & Raja Sreedharan, V., 2022. "Application of blockchain and smart contracts in autonomous vehicle supply chains: An experimental design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    11. Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
    12. Xue Han & Pratibha Rani, 2022. "RETRACTED ARTICLE: Evaluate the barriers of blockchain technology adoption in sustainable supply chain management in the manufacturing sector using a novel Pythagorean fuzzy-CRITIC-CoCoSo approach," Operations Management Research, Springer, vol. 15(3), pages 725-742, December.
    13. Antonella Moretto & Laura Macchion, 2022. "Drivers, barriers and supply chain variables influencing the adoption of the blockchain to support traceability along fashion supply chains," Operations Management Research, Springer, vol. 15(3), pages 1470-1489, December.
    14. Soumyadeb Chowdhury & Oscar Rodriguez-Espindola & Prasanta Dey & Pawan Budhwar, 2023. "Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK," Annals of Operations Research, Springer, vol. 327(1), pages 539-574, August.
    15. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    16. Yu Gong & Yun Zhang & Mohammed Alharithi, 2022. "Supply Chain Finance and Blockchain in Operations Management: A Literature Review," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    17. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    18. Alireza Farnoush & Ashish Gupta & Hamidreza Ahady Dolarsara & David Paradice & Shashank Rao, 2022. "Going beyond intent to adopt Blockchain: an analytics approach to understand board member and financial health characteristics," Annals of Operations Research, Springer, vol. 308(1), pages 93-123, January.
    19. Fuli Zhou & Yijie Liu, 2022. "Blockchain-Enabled Cross-Border E-Commerce Supply Chain Management: A Bibliometric Systematic Review," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    20. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Multi-tier supply chain behavior with blockchain technology: evidence from a frozen fish supply chain," Operations Management Research, Springer, vol. 16(3), pages 1562-1576, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:263:y:2023:i:c:s0925527323001950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.