IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7491-d412233.html
   My bibliography  Save this article

Traceability of Ready-to-Wear Clothing through Blockchain Technology

Author

Listed:
  • Juan José Bullón Pérez

    (Department of Chemical Engineering and Textile, University of Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

  • Araceli Queiruga-Dios

    (Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics, University of Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

  • Víctor Gayoso Martínez

    (Institute of Physical and Information Technologies (ITEFI), Spanish National Research Council (CSIC), 28006 Madrid, Spain
    These authors contributed equally to this work.)

  • Ángel Martín del Rey

    (Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics, University of Salamanca, 37008 Salamanca, Spain
    These authors contributed equally to this work.)

Abstract

Traceability and monitoring of industrial processes are becoming more important to assure the value of final products. Blockchain technology emerged as part of a movement linked to criptocurrencies and the Internet of Things, providing nice-to-have features such as traceability, authenticity and security to sectors willing to use this technology. In the retail industry, blockchain offers users the possibility to monitor details about time and place of elaboration, the origin of raw materials, the quality of materials involved in the manufacturing processes, information on the people or companies that work on it, etc. It allows to control and monitor textile articles, from their production or importing initial steps, up to their acquisition by the end consumer, using the blockchain as a means of tracking and identification during the whole process. This technology can also be used by the apparel industry in general and, more specifically, for ready-to-wear clothing, for tracing suppliers and customers along the entire logistics chain. The goal of this paper is to introduce the more recent traceability schemes for the apparel industry together with the proposal of a framework for ready-to-wear clothing which allows to ensure the transparency in the supply chain, clothing authenticity, reliability and integrity, and validity of the retail final products, and of the elements that compose the whole supply chain. In order to illustrate the proposal, a case study on a women’s shirt from an apparel and fashion company, where a private and open blockchain is used for tracing the product, is included. Blockchain actors are proposed for each product stage.

Suggested Citation

  • Juan José Bullón Pérez & Araceli Queiruga-Dios & Víctor Gayoso Martínez & Ángel Martín del Rey, 2020. "Traceability of Ready-to-Wear Clothing through Blockchain Technology," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7491-:d:412233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bin Shen, 2014. "Sustainable Fashion Supply Chain: Lessons from H&M," Sustainability, MDPI, vol. 6(9), pages 1-14, September.
    2. Onufrey, Ksenia & Bergek, Anna, 2020. "Second wind for exploitation: Pursuing high degrees of product and process innovativeness in mature industries," Technovation, Elsevier, vol. 89(C).
    3. Danny Pigini & Massimo Conti, 2017. "NFC-Based Traceability in the Food Chain," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    4. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    5. Tarun Kumar Agrawal & Rudrajeet Pal, 2019. "Traceability in Textile and Clothing Supply Chains: Classifying Implementation Factors and Information Sets via Delphi Study," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Liu & Han Zhao & Shiji Song & Wenxuan He & Xiaochen Li, 2021. "Coping with Loss Aversion and Risk Management in the Supply Chain Coordination," Sustainability, MDPI, vol. 13(8), pages 1-18, April.
    2. Ahmed, Wafaa A.H. & MacCarthy, Bart L., 2023. "Blockchain-enabled supply chain traceability – How wide? How deep?," International Journal of Production Economics, Elsevier, vol. 263(C).
    3. Antonella Moretto & Laura Macchion, 2022. "Drivers, barriers and supply chain variables influencing the adoption of the blockchain to support traceability along fashion supply chains," Operations Management Research, Springer, vol. 15(3), pages 1470-1489, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luoma, Päivi & Penttinen, Esko & Tapio, Petri & Toppinen, Anne, 2022. "Future images of data in circular economy for textiles," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    2. Aaldering, Lukas Jan & Song, Chie Hoon, 2021. "Of leaders and laggards - Towards digitalization of the process industries," Technovation, Elsevier, vol. 105(C).
    3. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    4. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    6. Boyu Liu & Xiameng Si & Haiyan Kang, 2022. "A Literature Review of Blockchain-Based Applications in Supply Chain," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    7. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    8. Carolina Rojas-Córdova & Amanda J. Williamson & Julio A. Pertuze & Gustavo Calvo, 2023. "Why one strategy does not fit all: a systematic review on exploration–exploitation in different organizational archetypes," Review of Managerial Science, Springer, vol. 17(7), pages 2251-2295, October.
    9. Dong, Ciwei & Liu, Qingyu & Shen, Bin, 2019. "To be or not to be green? Strategic investment for green product development in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 193-227.
    10. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    11. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    12. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    13. Schinckus, Christophe, 2022. "A Nuanced perspective on blockchain technology and healthcare," Technology in Society, Elsevier, vol. 71(C).
    14. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    15. Fu Jia & Yan Jiang, 2018. "Sustainable Global Sourcing: A Systematic Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    16. Panagiota Xanthopoulou, 2022. "Blockchain and the digital transformation of the public sector: The Greek experience," Technium Social Sciences Journal, Technium Science, vol. 32(1), pages 558-570, June.
    17. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    18. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    19. Cai, Ya-Jun & Chen, Yue & Siqin, Tana & Choi, Tsan-Ming & Chung, Sai-Ho, 2019. "Pay upfront or pay later? Fixed royal payment in sustainable fashion brand franchising," International Journal of Production Economics, Elsevier, vol. 214(C), pages 95-105.
    20. Alexandra-Codruta POPESCU (BÎZOI), 2015. "On The Sustainability Of Fast Fashion Supply Chains – A Comparison Between The Sustainability Of Inditex And H&M’S Supply Chains," Management and Marketing Journal, University of Craiova, Faculty of Economics and Business Administration, vol. 0(2), pages 333-352, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7491-:d:412233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.