IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v183y2017ipbp487-502.html
   My bibliography  Save this article

The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain

Author

Listed:
  • Zhou, Li
  • Naim, Mohamed M.
  • Disney, Stephen M.

Abstract

We investigate a three-echelon manufacturing and remanufacturing closed-loop supply chain (CLSC) constituting of a retailer, a manufacturer and a supplier. Each echelon, apart from its usual operations in the forward SC (FSC), has its own reverse logistics (RL) operations. We assume that RL information is transparent to the FSC, and the same replenishment policies are used throughout the supply chain. We focus on the impact on dynamic performance of uncertainties in the return yield, RL lead time and the product consumption lead time. Two outcomes are studied: order rate and serviceable inventory. The results suggest that higher return yield improves dynamic performance in terms of overshoot and risk of stock-out with a unit step response as input. However, when the return yield reaches a certain level, the classic bullwhip propagation normally associated with the FSC does not always hold. The longer remanufacturing and product consumption lead times result in a higher overshoot and a longer time to recover inventory, as well as more oscillation in the step response at the upstream echelons. We also study bullwhip and inventory variance when demand is a random variable. Our analysis suggests that higher return yield contributes to reduced bullwhip and inventory variance at the echelon level but for the CLSC as a whole the level of bullwhip may decrease as well as increase as it propagates along the supply chain. The reason for such behaviour is due to the interaction of the various model parameters and should be the subject of further analytical research. Furthermore, by studying the three-echelon CLSC, we produce a general equation for eliminating inventory offsets in an n-echelon CLSC. This is helpful to managers who wish to maintain inventory service levels in multi-echelon CLSCs.

Suggested Citation

  • Zhou, Li & Naim, Mohamed M. & Disney, Stephen M., 2017. "The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 487-502.
  • Handle: RePEc:eee:proeco:v:183:y:2017:i:pb:p:487-502
    DOI: 10.1016/j.ijpe.2016.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316301748
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atalay Atasu & Miklos Sarvary & Luk N. Van Wassenhove, 2008. "Remanufacturing as a Marketing Strategy," Management Science, INFORMS, vol. 54(10), pages 1731-1746, October.
    2. Naim, M.M., 2006. "The impact of the net present value on the assessment of the dynamic performance of e-commerce enabled supply chains," International Journal of Production Economics, Elsevier, vol. 104(2), pages 382-393, December.
    3. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    4. Zhou, Li & Disney, Stephen & Towill, Denis R., 2010. "A pragmatic approach to the design of bullwhip controllers," International Journal of Production Economics, Elsevier, vol. 128(2), pages 556-568, December.
    5. Zhou, Li & Naim, Mohamed M. & Ou Tang & Towill, Denis R., 2006. "Dynamic performance of a hybrid inventory system with a Kanban policy in remanufacturing process," Omega, Elsevier, vol. 34(6), pages 585-598, December.
    6. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    7. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    8. Hosoda, Takamichi & Disney, Stephen M. & Gavirneni, Srinagesh, 2015. "The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains," European Journal of Operational Research, Elsevier, vol. 246(3), pages 827-836.
    9. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2002. "Transfer function analysis of forecasting induced bullwhip in supply chains," International Journal of Production Economics, Elsevier, vol. 78(2), pages 133-144, July.
    10. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    11. Hwarng, H. Brian & Xie, Na, 2008. "Understanding supply chain dynamics: A chaos perspective," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1163-1178, February.
    12. Wikner, J. & Towill, D. R. & Naim, M., 1991. "Smoothing supply chain dynamics," International Journal of Production Economics, Elsevier, vol. 22(3), pages 231-248, December.
    13. Disney, S.M. & Towill, D.R., 2005. "Eliminating drift in inventory and order based production control systems," International Journal of Production Economics, Elsevier, vol. 93(1), pages 331-344, January.
    14. Robotis, Andreas & Boyaci, Tamer & Verter, Vedat, 2012. "Investing in reusability of products of uncertain remanufacturing cost: The role of inspection capabilities," International Journal of Production Economics, Elsevier, vol. 140(1), pages 385-395.
    15. van der Laan, Erwin & Salomon, Marc & Dekker, Rommert, 1999. "An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies," European Journal of Operational Research, Elsevier, vol. 115(1), pages 195-214, May.
    16. Kenné, Jean-Pierre & Dejax, Pierre & Gharbi, Ali, 2012. "Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 135(1), pages 81-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahraei, Seyed Mehdi & Teo, Chee-Chong, 2018. "Optimizing a recover-and-assemble remanufacturing system with production smoothing," International Journal of Production Economics, Elsevier, vol. 197(C), pages 330-341.
    2. Huang, Yanting & Wang, Zongjun, 2017. "Values of information sharing: A comparison of supplier-remanufacturing and manufacturer-remanufacturing scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 20-44.
    3. Dominguez, Roberto & Cannella, Salvatore & Ponte, Borja & Framinan, Jose M., 2020. "On the dynamics of closed-loop supply chains under remanufacturing lead time variability," Omega, Elsevier, vol. 97(C).
    4. Ponte, Borja & Naim, Mohamed M. & Syntetos, Aris A., 2019. "The value of regulating returns for enhancing the dynamic behaviour of hybrid manufacturing-remanufacturing systems," European Journal of Operational Research, Elsevier, vol. 278(2), pages 629-645.
    5. Lin, Junyi & Naim, Mohamed M. & Spiegler, Virginia L.M., 2020. "Delivery time dynamics in an assemble-to-order inventory and order based production control system," International Journal of Production Economics, Elsevier, vol. 223(C).
    6. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "OVAP: A strategy to implement partial information sharing among supply chain retailers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 122-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:183:y:2017:i:pb:p:487-502. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.