IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v140y2012i1p508-520.html
   My bibliography  Save this article

A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators

Author

Listed:
  • Wang, Xuping
  • Ruan, Junhu
  • Shi, Yan

Abstract

The existence of uncertainties may result in various unexpected disruption events in logistics delivery, which often makes actual delivery operations deviate from intended plans. The purpose of the paper is to develop a combinational disruption recovery model for vehicle routing problem with time windows (VRPTW), trying to handle a variety and a combination of delivery disruption events. Firstly, a novel approach to measure new-adding customer disruption, which considers the real-world participators (mainly including customers, drivers and logistics providers) in VRPTW, is developed. Then the paper proposes methods of transforming various delivery disruptions into the new-adding customer disruption, and determines the optimal starting times of delivery vehicles from the depot to provide a new rescue strategy (called starting later policy) for disrupted VRPTW. Based on the above, a combinational disruption recovery model for VRPTW is constructed and nested partition method (NPM) is designed to solve the proposed model. Finally, computational results are reported and compared with those of previous works, which verifies the effectiveness of the proposed solution and draws some interesting conclusions.

Suggested Citation

  • Wang, Xuping & Ruan, Junhu & Shi, Yan, 2012. "A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators," International Journal of Production Economics, Elsevier, vol. 140(1), pages 508-520.
  • Handle: RePEc:eee:proeco:v:140:y:2012:i:1:p:508-520
    DOI: 10.1016/j.ijpe.2012.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312002824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bertsimas, Dimitris & Van Ryzin, Garrett., 1991. "A stochastic and dynamic vehicle routing problem in the Euclidean plane," Working papers 3286-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    2. Dimitris J. Bertsimas & Garrett van Ryzin, 1993. "Stochastic and Dynamic Vehicle Routing in the Euclidean Plane with Multiple Capacitated Vehicles," Operations Research, INFORMS, vol. 41(1), pages 60-76, February.
    3. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "Real-time vehicle rerouting problems with time windows," European Journal of Operational Research, Elsevier, vol. 194(3), pages 711-727, May.
    4. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    5. Leyuan Shi & Sigurdur Ólafsson & Qun Chen, 2001. "An Optimization Framework for Product Design," Management Science, INFORMS, vol. 47(12), pages 1681-1692, December.
    6. Cheung, Bernard K.-S. & Choy, K.L. & Li, Chung-Lun & Shi, Wenzhong & Tang, Jian, 2008. "Dynamic routing model and solution methods for fleet management with mobile technologies," International Journal of Production Economics, Elsevier, vol. 113(2), pages 694-705, June.
    7. Yeo, Wee Meng & Yuan, Xue-Ming, 2012. "Impact of transportation contract on inventory systems with demand cancellation," International Journal of Production Economics, Elsevier, vol. 137(1), pages 45-54.
    8. Dimitris J. Bertsimas & Garrett van Ryzin, 1991. "A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane," Operations Research, INFORMS, vol. 39(4), pages 601-615, August.
    9. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    10. Li, Jing-Quan & Mirchandani, Pitu B. & Borenstein, Denis, 2009. "A Lagrangian heuristic for the real-time vehicle rescheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 419-433, May.
    11. de Haan, J. & Naus, F. & Overboom, M., 2012. "Creative tension in a lean work environment: Implications for logistics firms and workers," International Journal of Production Economics, Elsevier, vol. 137(1), pages 157-164.
    12. Kok, A.L. & Hans, E.W. & Schutten, J.M.J., 2011. "Optimizing departure times in vehicle routes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 579-587, May.
    13. Cauvin, A.C.A. & Ferrarini, A.F.A. & Tranvouez, E.T.E., 2009. "Disruption management in distributed enterprises: A multi-agent modelling and simulation of cooperative recovery behaviours," International Journal of Production Economics, Elsevier, vol. 122(1), pages 429-439, November.
    14. Jürgen Branke & Martin Middendorf & Guntram Noeth & Maged Dessouky, 2005. "Waiting Strategies for Dynamic Vehicle Routing," Transportation Science, INFORMS, vol. 39(3), pages 298-312, August.
    15. Sancak, Emre & Salman, F. Sibel, 2011. "Multi-item dynamic lot-sizing with delayed transportation policy," International Journal of Production Economics, Elsevier, vol. 131(2), pages 595-603, June.
    16. Swihart, Michael R. & Papastavrou, Jason D., 1999. "A stochastic and dynamic model for the single-vehicle pick-up and delivery problem," European Journal of Operational Research, Elsevier, vol. 114(3), pages 447-464, May.
    17. Qi, Xiangtong & Bard, Jonathan F. & Yu, Gang, 2006. "Disruption management for machine scheduling: The case of SPT schedules," International Journal of Production Economics, Elsevier, vol. 103(1), pages 166-184, September.
    18. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    19. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    20. Uskonen, Jukka & Tenhiälä, Antti, 2012. "The price of responsiveness: Cost analysis of change orders in make-to-order manufacturing," International Journal of Production Economics, Elsevier, vol. 135(1), pages 420-429.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biao Yuan & Zhibin Jiang, 2017. "Disruption Management for the Real-Time Home Caregiver Scheduling and Routing Problem," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    2. Junhu Ruan & Felix T. S. Chan & Xiaofeng Zhao, 2018. "Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    3. Wang, Jianxin & Lim, Ming K. & Zhan, Yuanzhu & Wang, XiaoFeng, 2020. "An intelligent logistics service system for enhancing dispatching operations in an IoT environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    4. Giménez-Palacios, Iván & Parreño, Francisco & Álvarez-Valdés, Ramón & Paquay, Célia & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    6. Anne Meyer & Suad Sejdovic & Katharina Glock & Matthias Bender & Natalja Kleiner & Dominik Riemer, 2018. "A disruption management system for automotive inbound networks: concepts and challenges," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 25-56, March.
    7. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    8. Junhu Ruan & Xuping Wang & Yan Shi, 2014. "A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses," IJERPH, MDPI, vol. 11(11), pages 1-29, October.
    9. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    4. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    5. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    6. Lars M. Hvattum & Arne Løkketangen & Gilbert Laporte, 2006. "Solving a Dynamic and Stochastic Vehicle Routing Problem with a Sample Scenario Hedging Heuristic," Transportation Science, INFORMS, vol. 40(4), pages 421-438, November.
    7. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    8. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    9. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    10. Sheridan, Patricia Kristine & Gluck, Erich & Guan, Qi & Pickles, Thomas & Balcıog˜lu, Barış & Benhabib, Beno, 2013. "The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 178-194.
    11. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    12. Barrett W. Thomas & Chelsea C. White, 2004. "Anticipatory Route Selection," Transportation Science, INFORMS, vol. 38(4), pages 473-487, November.
    13. Cristián E. Cortés & Doris Sáez & Alfredo Núñez & Diego Muñoz-Carpintero, 2009. "Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 43(1), pages 27-42, February.
    14. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    15. Chou, Yon-Chun & Chen, Yao-Hung & Chen, Hui-Min, 2014. "Pickup and delivery routing with hub transshipment across flexible time periods for improving dual objectives on workload and waiting time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 98-114.
    16. Xian Cheng & Shaoyi Liao & Zhongsheng Hua, 2017. "A policy of picking up parcels for express courier service in dynamic environments," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2470-2488, May.
    17. Jürgen Branke & Martin Middendorf & Guntram Noeth & Maged Dessouky, 2005. "Waiting Strategies for Dynamic Vehicle Routing," Transportation Science, INFORMS, vol. 39(3), pages 298-312, August.
    18. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    19. Chen, Lichun & Miller-Hooks, Elise, 2012. "Optimal team deployment in urban search and rescue," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 984-999.
    20. Xiong Hao & Yan Huili, 2019. "General Method of Building a Real-Time Optimization Policy for Dynamic Vehicle Routing Problem," Journal of Systems Science and Information, De Gruyter, vol. 7(6), pages 584-598, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:140:y:2012:i:1:p:508-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.