IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v47y2025i2d10.1007_s00291-024-00788-6.html
   My bibliography  Save this article

Minimizing delays of patient transports with incomplete information: A modeling approach based on the vehicle routing problem

Author

Listed:
  • Dennis Adelhütte

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Kristin Braun

    (Friedrich-Alexander-Universität Erlangen-Nürnberg
    Fraunhofer Institute for Integrated Circuits IIS)

  • Frauke Liers

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • Sebastian Tschuppik

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

Abstract

We investigate a challenging task in ambulatory care, the minimizing of delays of patient transports. In practice, a limited number of vehicles is available for non-rescue transports. Furthermore, the dispatcher rarely has access to complete information when establishing a transport plan for dispatching the vehicles. If additional transport is requested on demand then schedules need to be updated, which can lead to long delays. We model the scheduling of patient transports as a vehicle routing problem with general time windows and solve it as a mixed-integer linear problem that is modified whenever additional transport information becomes available. We propose a modeling approach that is designed to determine fair and stable plans. Furthermore, we show that the model can easily be modified when transports need to satisfy additional requirements, e.g., during pandemics, exemplarily the Covid-19 pandemic. To show the applicability and efficiency of our modeling approach, we conduct a numerical study using historical data from the region of Middle Franconia. The results reveal and show that, by applying mathematical optimization—or, to be more precise by solving mixed-integer linear problem formulations—one can significantly decrease delays and have considerable potential for optimized patient transports.

Suggested Citation

  • Dennis Adelhütte & Kristin Braun & Frauke Liers & Sebastian Tschuppik, 2025. "Minimizing delays of patient transports with incomplete information: A modeling approach based on the vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 47(2), pages 565-604, June.
  • Handle: RePEc:spr:orspec:v:47:y:2025:i:2:d:10.1007_s00291-024-00788-6
    DOI: 10.1007/s00291-024-00788-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00788-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00788-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    2. P. L. van den Berg & J. T. van Essen, 2019. "Scheduling Non-Urgent Patient Transportation While Maximizing Emergency Coverage," Transportation Science, INFORMS, vol. 53(2), pages 492-509, March.
    3. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    4. Bertsimas, Dimitris & Van Ryzin, Garrett., 1991. "A stochastic and dynamic vehicle routing problem in the Euclidean plane," Working papers 3286-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    6. Nafiseh Shamsi Gamchi & S. Ali Torabi & Fariborz Jolai, 2021. "A novel vehicle routing problem for vaccine distribution using SIR epidemic model," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 155-188, March.
    7. Joaquín Pacheco & Manuel Laguna, 2020. "Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic," Journal of Heuristics, Springer, vol. 26(5), pages 619-635, October.
    8. T. Ibaraki & S. Imahori & M. Kubo & T. Masuda & T. Uno & M. Yagiura, 2005. "Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints," Transportation Science, INFORMS, vol. 39(2), pages 206-232, May.
    9. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    10. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    11. Xian Yu & Siqian Shen & Huizhu Wang, 2021. "Integrated Vehicle Routing and Service Scheduling Under Time and Cancellation Uncertainties with Application in Nonemergency Medical Transportation," Service Science, INFORMS, vol. 13(3), pages 172-191, September.
    12. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    13. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    14. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    15. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    16. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, July.
    17. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    18. Dimitris J. Bertsimas & Garrett van Ryzin, 1991. "A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane," Operations Research, INFORMS, vol. 39(4), pages 601-615, August.
    19. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    20. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    21. Bertsimas, Dimitris & Chervi, Philippe. & Peterson, Michael., 1991. "Computational approaches to stochastic vehicle routing problems," Working papers 3285-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    22. Sinem Kınay Savaşer & Bahar Yetis Kara, 2022. "Mobile healthcare services in rural areas: an application with periodic location routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 875-910, September.
    23. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    24. repec:plo:pone00:0237628 is not listed on IDEAS
    25. Kergosien, Y. & Lenté, Ch. & Piton, D. & Billaut, J.-C., 2011. "A tabu search heuristic for the dynamic transportation of patients between care units," European Journal of Operational Research, Elsevier, vol. 214(2), pages 442-452, October.
    26. Peter J H Hulshof & Nikky Kortbeek & Richard J Boucherie & Erwin W Hans & Piet J M Bakker, 2012. "Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS," Health Systems, Taylor & Francis Journals, vol. 1(2), pages 129-175, December.
    27. Zhi-Long Chen & Hang Xu, 2006. "Dynamic Column Generation for Dynamic Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 40(1), pages 74-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Yu Wu & Bo Zeng & Ming Jian, 2025. "ADP- and rollout-based dynamic vehicle routing for pick-up service via budgeting capacity," Flexible Services and Manufacturing Journal, Springer, vol. 37(2), pages 513-557, June.
    4. Ritzinger, Ulrike & Puchinger, Jakob & Rudloff, Christian & Hartl, Richard F., 2022. "Comparison of anticipatory algorithms for a dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 301(2), pages 591-608.
    5. Zhang, Jian & Luo, Kelin & Florio, Alexandre M. & Van Woensel, Tom, 2023. "Solving large-scale dynamic vehicle routing problems with stochastic requests," European Journal of Operational Research, Elsevier, vol. 306(2), pages 596-614.
    6. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    7. Marlin W. Ulmer & Justin C. Goodson & Dirk C. Mattfeld & Marco Hennig, 2019. "Offline–Online Approximate Dynamic Programming for Dynamic Vehicle Routing with Stochastic Requests," Service Science, INFORMS, vol. 53(1), pages 185-202, February.
    8. Nikola Mardešić & Tomislav Erdelić & Tonči Carić & Marko Đurasević, 2023. "Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment," Mathematics, MDPI, vol. 12(1), pages 1-44, December.
    9. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    10. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    11. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    13. Diego Muñoz-Carpintero & Doris Sáez & Cristián E. Cortés & Alfredo Núñez, 2015. "A Methodology Based on Evolutionary Algorithms to Solve a Dynamic Pickup and Delivery Problem Under a Hybrid Predictive Control Approach," Transportation Science, INFORMS, vol. 49(2), pages 239-253, May.
    14. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    15. Ninja Soeffker & Marlin W. Ulmer & Dirk C. Mattfeld, 2024. "Balancing resources for dynamic vehicle routing with stochastic customer requests," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(2), pages 331-373, June.
    16. Douglas G. Macharet & Armando Alves Neto & Vila F. Camara Neto & Mario F. M. Campos, 2018. "Dynamic region visit routing problem for vehicles with minimum turning radius," Journal of Heuristics, Springer, vol. 24(1), pages 83-109, February.
    17. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.
    18. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    19. Kirac, Emre & Milburn, Ashlea Bennett & Gedik, Ridvan, 2025. "The Dynamic Team Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 324(1), pages 22-39.
    20. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:47:y:2025:i:2:d:10.1007_s00291-024-00788-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.