IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v53y2019i2p492-509.html
   My bibliography  Save this article

Scheduling Non-Urgent Patient Transportation While Maximizing Emergency Coverage

Author

Listed:
  • P. L. van den Berg

    (Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands; and Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • J. T. van Essen

    (Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands; and Centrum Wiskunde and Informatica, 1090 GB Amsterdam, The Netherlands)

Abstract

Many ambulance providers operate both advanced life support (ALS) and basic life support (BLS) ambulances. Typically, only an ALS ambulance can respond to an emergency call, whereas non-urgent patient transportation requests can be served by either an ALS or a BLS ambulance. The total capacity of BLS ambulances is usually not enough to fulfill all non-urgent transportation requests. The remaining transportation requests then have to be performed by ALS ambulances, which reduces the coverage for emergency calls. We present a model that determines the routes for BLS ambulances while maximizing the remaining coverage by ALS ambulances. Different from the classical dial-a-ride problem, only one patient can be transported at a time, and not all requests are known in advance. Throughout the day, new requests arrive, and we present an online model to deal with these requests.

Suggested Citation

  • P. L. van den Berg & J. T. van Essen, 2019. "Scheduling Non-Urgent Patient Transportation While Maximizing Emergency Coverage," Transportation Science, INFORMS, vol. 53(2), pages 492-509, March.
  • Handle: RePEc:inm:ortrsc:v:53:y:2019:i:2:p:492-509
    DOI: 10.1287/trsc.2018.0823
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2018.0823
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2018.0823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ulrike Ritzinger & Jakob Puchinger & Richard Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    2. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    3. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    4. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    5. Lubicz, Marek & Mielczarek, Bozena, 1987. "Simulation modelling of emergency medical services," European Journal of Operational Research, Elsevier, vol. 29(2), pages 178-185, May.
    6. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    7. Kergosien, Y. & Lenté, Ch. & Piton, D. & Billaut, J.-C., 2011. "A tabu search heuristic for the dynamic transportation of patients between care units," European Journal of Operational Research, Elsevier, vol. 214(2), pages 442-452, October.
    8. Zhi-Long Chen & Hang Xu, 2006. "Dynamic Column Generation for Dynamic Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 40(1), pages 74-88, February.
    9. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    10. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huizing, Dylan & Schäfer, Guido & van der Mei, Rob D. & Bhulai, Sandjai, 2020. "The median routing problem for simultaneous planning of emergency response and non-emergency jobs," European Journal of Operational Research, Elsevier, vol. 285(2), pages 712-727.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    2. Mohri, Seyed Sina & Akbarzadeh, Meisam & Sayed Matin, Seyed Hamed, 2020. "A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    3. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    4. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    5. Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
    6. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    7. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    8. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    9. Zhi-Hai Zhang & Kang Li, 2015. "A novel probabilistic formulation for locating and sizing emergency medical service stations," Annals of Operations Research, Springer, vol. 229(1), pages 813-835, June.
    10. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    11. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    12. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    13. G Erdoğan & E Erkut & A Ingolfsson & G Laporte, 2010. "Scheduling ambulance crews for maximum coverage," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 543-550, April.
    14. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    15. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    16. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    17. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    18. A Başar & B Çatay & T Ünlüyurt, 2011. "A multi-period double coverage approach for locating the emergency medical service stations in Istanbul," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 627-637, April.
    19. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    20. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:53:y:2019:i:2:p:492-509. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Walls (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.