IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v133y2011i1p243-250.html
   My bibliography  Save this article

Efficient location of industrial activity cells in a global supply chain

Author

Listed:
  • Bogataj, Marija
  • Grubbström, Robert W.
  • Bogataj, Ludvik

Abstract

Inefficient locations for production, distribution and reverse logistics plants will result in excess costs no matter how well material requirements planning (MRP), inventory control, distribution and information sharing decisions are optimized. In this paper we study ways in which aspect of activity cell location decisions can be analyzed within an extended MRP model. This model has previously been extended by including distribution and reverse logistics components in a compact form, presented in Grubbström et al. (2007). Our aim is to demonstrate the basic differences between an approach to location problems with MRP "under the same roof" as the global supply chain, in which transportation time delays and direct transportation costs have substantial influence. We discuss possibilities of how to present location aspects in the supply chain model obtained from combining input-output analysis and Laplace transforms in four sub-systems, namely manufacturing, distribution, consumption and reverse logistics, and show how the transportation costs and lead time influenced by the location of all these activities affect the resulting net present value (NPV). Our aim is to build a model supporting decisions concerning the structure of a supply chain as an alternative to a mixed integer programming formulation. The model developed is based on the use of continuous functions describing spatial distributions of cost and customer demand. Continuous functions are embedded in the MRP extension previously introduced in Grubbström et al. (2007). Location decisions influence (i) production costs, because timing influences the cost of activities involved in creating a product, cf. (Grubbström and Bogataj, submitted for publication), and (ii) logistics costs, which refer to the procurement and physical transmission of materials through the supply chain. In this current paper we wish to combine both of these aspects into a comprehensive model, where we show the interaction between the "space of flows" and the "space of places" as Giovanni Arrighi distinguishes one from the other in his book The Long Twentieth Century.

Suggested Citation

  • Bogataj, Marija & Grubbström, Robert W. & Bogataj, Ludvik, 2011. "Efficient location of industrial activity cells in a global supply chain," International Journal of Production Economics, Elsevier, vol. 133(1), pages 243-250, September.
  • Handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:243-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527310003798
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence D. Burns & Randolph W. Hall & Dennis E. Blumenfeld & Carlos F. Daganzo, 1985. "Distribution Strategies that Minimize Transportation and Inventory Costs," Operations Research, INFORMS, vol. 33(3), pages 469-490, June.
    2. Tönu Puu, 1997. "Mathematical Location and Land Use Theory," Advances in Spatial Science, Springer, number 978-3-662-03439-2, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    2. Francisco Campuzano-Bolarín & Fulgencio Marín-García & José Andrés Moreno-Nicolás & Marija Bogataj & David Bogataj, 2021. "Network Simulation Method for the evaluation of perturbed supply chains on a finite horizon," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 823-839, September.
    3. Bogataj, David & Bogataj, Marija & Drobne, Samo, 2019. "Interactions between flows of human resources in functional regions and flows of inventories in dynamic processes of global supply chains," International Journal of Production Economics, Elsevier, vol. 209(C), pages 215-225.
    4. Danijel Kovačić & Marija Bogataj, 2013. "Reverse logistics facility location using cyclical model of extended MRP theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 41-57, June.
    5. Jesús F. Lampón & Pablo Cabanelas-Lorenzo & Santiago Lago-Peñas, 2013. "Why firms relocate their production overseas? The answer lies inside: corporate, logistic and technological determinants," Working Papers 2013/3, Institut d'Economia de Barcelona (IEB).
    6. Bogataj, Marija & Grubbström, Robert W., 2013. "Transportation delays in reverse logistics," International Journal of Production Economics, Elsevier, vol. 143(2), pages 395-402.
    7. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    8. Francisco Campuzano-Bolarín & Fulgencio Marín-García & José Andrés Moreno-Nicolás & Marija Bogataj & David Bogataj, 2019. "Supply Chain Risk of Obsolescence at Simultaneous Robust Perturbations," Sustainability, MDPI, vol. 11(19), pages 1-18, October.
    9. Danijel Kovačić & Eloy Hontoria & Lorenzo Ros-McDonnell & Marija Bogataj, 2015. "Location and lead-time perturbations in multi-level assembly systems of perishable goods in Spanish baby food logistics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(3), pages 607-623, September.
    10. Andrés Fernández-Miguel & Maria Pia Riccardi & Valerio Veglio & Fernando E. García-Muiña & Alfonso P. Fernández del Hoyo & Davide Settembre-Blundo, 2022. "Disruption in Resource-Intensive Supply Chains: Reshoring and Nearshoring as Strategies to Enable Them to Become More Resilient and Sustainable," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    11. Jesús F. Lampón & Pablo Cabanelas-Lorenzo & Santiago Lago-Peñas, 2013. "Why firms relocate their production overseas? The answer lies inside: corporate, logistic and technological determinants," Working Papers 2013/3, Institut d'Economia de Barcelona (IEB).
    12. Kovačić, Danijel & Usenik, Janez & Bogataj, Marija, 2017. "Optimal decisions on investments in Urban Energy Cogeneration plants – Extended MRP and fuzzy approach to the stochastic systems," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 583-595.
    13. Bogataj, D. & Aver, B. & Bogataj, M., 2016. "Supply chain risk at simultaneous robust perturbations," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 68-78.
    14. Bogataj, David & Bogataj, Marija & Hudoklin, Domen, 2017. "Reprint of “Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model”," International Journal of Production Economics, Elsevier, vol. 194(C), pages 113-125.
    15. Bogataj, David & Bogataj, Marija & Hudoklin, Domen, 2017. "Mitigating risks of perishable products in the cyber-physical systems based on the extended MRP model," International Journal of Production Economics, Elsevier, vol. 193(C), pages 51-62.
    16. Bogataj, David & Battini, Daria & Calzavara, Martina & Persona, Alessandro, 2019. "The ageing workforce challenge: Investments in collaborative robots or contribution to pension schemes, from the multi-echelon perspective," International Journal of Production Economics, Elsevier, vol. 210(C), pages 97-106.
    17. Xiaoping Fang & Zhang Ji & Zhiya Chen & Weiya Chen & Chao Cao & Jinrong Gan, 2020. "Synergy Degree Evaluation of Container Multimodal Transport System," Sustainability, MDPI, vol. 12(4), pages 1-26, February.
    18. Sarkar, Biswajit & Guchhait, Rekha & Sarkar, Mitali & Cárdenas-Barrón, Leopoldo Eduardo, 2019. "How does an industry manage the optimum cash flow within a smart production system with the carbon footprint and carbon emission under logistics framework?," International Journal of Production Economics, Elsevier, vol. 213(C), pages 243-257.
    19. Semanur Soyyiğit & Yasemin Asu Çırpıcı, 2017. "An Input-Output Network Structure Analysis Of Selected Countries," Yildiz Social Science Review, Yildiz Technical University, vol. 3(2), pages 65-88.
    20. Zhou, Xiaoguang & Zhou, Yanhui, 2015. "Designing a multi-echelon reverse logistics operation and network: A case study of office paper in Beijing," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 58-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jing & Dong, Ming & Xu, Lei, 2018. "A perishable product shipment consolidation model considering freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 56-86.
    2. Luca Bertazzi & Maria Grazia Speranza, 1999. "Minimizing logistic costs in multistage supply chains," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 399-417, June.
    3. Uwe Blien & Anette Haas, 2005. "Service industries and regional development: An analysis for eastern Germany," The Service Industries Journal, Taylor & Francis Journals, vol. 25(8), pages 979-997, December.
    4. Edward Kim, M. & Schonfeld, Paul & Roche, Austin & Raleigh, Chelsie, 2022. "Optimal service zones and frequencies for flexible-route freight deliveries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 182-199.
    5. Luca Bertazzi & Maria Grazia Speranza & Walter Ukovich, 2000. "Exact and Heuristic Solutions for a Shipment Problem with Given Frequencies," Management Science, INFORMS, vol. 46(7), pages 973-988, July.
    6. Li, Jing-An & Wu, Yue & Lai, Kin Keung & Liu, Ke, 2008. "Replenishment routing problems between a single supplier and multiple retailers with direct delivery," European Journal of Operational Research, Elsevier, vol. 190(2), pages 412-420, October.
    7. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    8. Pan, Zhendong & Tang, Jiafu & Fung, Richard Y.K., 2009. "Synchronization of inventory and transportation under flexible vehicle constraint: A heuristics approach using sliding windows and hierarchical tree structure," European Journal of Operational Research, Elsevier, vol. 192(3), pages 824-836, February.
    9. Baller, Reinhard & Fontaine, Pirmin & Minner, Stefan & Lai, Zhen, 2022. "Optimizing automotive inbound logistics: A mixed-integer linear programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    10. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric, 2021. "A time-expanded network reduction matheuristic for the logistics service network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    11. Chung-Yee Lee & Sila Çetinkaya & Wikrom Jaruphongsa, 2003. "A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse," Operations Research, INFORMS, vol. 51(5), pages 735-747, October.
    12. Wei, Wenchao & Guimarães, Luis & Amorim, Pedro & Almada-Lobo, Bernardo, 2017. "Tactical production and distribution planning with dependency issues on the production process," Omega, Elsevier, vol. 67(C), pages 99-114.
    13. Mengdi Zhang & George Q. Huang & Su Xiu Xu & Zhiheng Zhao, 2019. "Optimization based transportation service trading in B2B e-commerce logistics," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2603-2619, October.
    14. Wei, Bo & Çetinkaya, Sıla & Cline, Daren B.H., 2023. "Inbound replenishment and outbound dispatch decisions under hybrid shipment consolidation policies: An analytical model and comparison," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    15. Anton J. Kleywegt & Vijay S. Nori & Martin W. P. Savelsbergh, 2002. "The Stochastic Inventory Routing Problem with Direct Deliveries," Transportation Science, INFORMS, vol. 36(1), pages 94-118, February.
    16. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    17. John Gunnar Carlsson & Mehdi Behroozi & Raghuveer Devulapalli & Xiangfei Meng, 2016. "Household-Level Economies of Scale in Transportation," Operations Research, INFORMS, vol. 64(6), pages 1372-1387, December.
    18. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    19. Hall, Randolph W., 1996. "On the integration of production and distribution: Economic order and production quantity implications," Transportation Research Part B: Methodological, Elsevier, vol. 30(5), pages 387-403, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:133:y:2011:i:1:p:243-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.