IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v117y2009i1p174-184.html
   My bibliography  Save this article

Multi-site available-to-promise modeling for assemble-to-order manufacturing: An illustration on TFT-LCD manufacturing

Author

Listed:
  • Tsai, Kune-muh
  • Wang, Shan-chi

Abstract

Available-to-promise (ATP) serves as a significant factor to enhance customer service in order promising. Most research regarding ATP considered only one plant and was not mainly developed under the make-to-order (MTO) or assemble-to-order (ATO) strategy. We constructed a generic three-stage model of multi-site ATP mechanism for ATO manufacturing and experimented on a local TFT-LCD manufacturer. We further tested eight scenarios of ATP allocation plans based on different cost structures in the objective functions to compare the ATP plans and performances. Results showed that we can obtain an appropriate ATP plan with proper cost structure.

Suggested Citation

  • Tsai, Kune-muh & Wang, Shan-chi, 2009. "Multi-site available-to-promise modeling for assemble-to-order manufacturing: An illustration on TFT-LCD manufacturing," International Journal of Production Economics, Elsevier, vol. 117(1), pages 174-184, January.
  • Handle: RePEc:eee:proeco:v:117:y:2009:i:1:p:174-184
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00353-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gnoni, M. G. & Iavagnilio, R. & Mossa, G. & Mummolo, G. & Di Leva, A., 2003. "Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry," International Journal of Production Economics, Elsevier, vol. 85(2), pages 251-262, August.
    2. Beamon, Benita M., 1998. "Supply chain design and analysis:: Models and methods," International Journal of Production Economics, Elsevier, vol. 55(3), pages 281-294, August.
    3. Pibernik, Richard, 2005. "Advanced available-to-promise: Classification, selected methods and requirements for operations and inventory management," International Journal of Production Economics, Elsevier, vol. 93(1), pages 239-252, January.
    4. Chien-Yu Chen & Zhen-Ying Zhao & Michael O. Ball, 2001. "Quantity and Due Date Quoting Available to Promise," Information Systems Frontiers, Springer, vol. 3(4), pages 477-488, December.
    5. Guinet, Alain, 2001. "Multi-site planning: A transshipment problem," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 21-32, December.
    6. Timpe, Christian H. & Kallrath, Josef, 2000. "Optimal planning in large multi-site production networks," European Journal of Operational Research, Elsevier, vol. 126(2), pages 422-435, October.
    7. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chou, Jui-Sheng & Tai, Yian & Chang, Lian-Ji, 2010. "Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models," International Journal of Production Economics, Elsevier, vol. 128(1), pages 339-350, November.
    2. Han, Guanghua & Dong, Ming & Liu, Shaoxuan, 2014. "Yield and allocation management in a continuous make-to-stock system with demand upgrade substitution," International Journal of Production Economics, Elsevier, vol. 156(C), pages 124-131.
    3. Xiao, Yongbo & Chen, Jian & Lee, Chung-Yee, 2010. "Optimal decisions for assemble-to-order systems with uncertain assembly capacity," International Journal of Production Economics, Elsevier, vol. 123(1), pages 155-165, January.
    4. Ben Ali, M. & D’Amours, S. & Gaudreault, J. & Carle, M-A., 2018. "Configuration and evaluation of an integrated demand management process using a space-filling design and Kriging metamodeling," Operations Research Perspectives, Elsevier, vol. 5(C), pages 45-58.
    5. Zhang, Xiaochen & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2022. "Subgroup analysis for high-dimensional functional regression," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Yin-Yann Chen & Hsiao-Yao Fan, 2013. "The Multi-Site Order Fulfillment-Planning Model: A Global Corporation Case Study," Journal of Social and Development Sciences, AMH International, vol. 4(5), pages 236-241.
    7. Alexander Seitz & Martin Grunow, 2017. "Increasing accuracy and robustness of order promises," International Journal of Production Research, Taylor & Francis Journals, vol. 55(3), pages 656-670, February.
    8. Atan, Zümbül & Ahmadi, Taher & Stegehuis, Clara & Kok, Ton de & Adan, Ivo, 2017. "Assemble-to-order systems: A review," European Journal of Operational Research, Elsevier, vol. 261(3), pages 866-879.
    9. Seitz, Alexander & Grunow, Martin & Akkerman, Renzo, 2020. "Data driven supply allocation to individual customers considering forecast bias," International Journal of Production Economics, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Behnamian & S. M. T. Fatemi Ghomi, 2016. "A survey of multi-factory scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(1), pages 231-249, February.
    2. Alarcón, F. & Alemany, M.M.E. & Ortiz, A., 2009. "Conceptual framework for the characterization of the order promising process in a collaborative selling network context," International Journal of Production Economics, Elsevier, vol. 120(1), pages 100-114, July.
    3. Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2021. "Suboptimal sliding manifold For nonlinear supply chain with time delay," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 151-173, July.
    4. Fleisch, Elgar & Tellkamp, Christian, 2005. "Inventory inaccuracy and supply chain performance: a simulation study of a retail supply chain," International Journal of Production Economics, Elsevier, vol. 95(3), pages 373-385, March.
    5. Thammakoranonta, Nithinant & Radhakrishnan, Abirami & Davis, Steve & Peck, John C. & Miller, Janis L., 2008. "A protocol for the order commitment decision in a supply network," International Journal of Production Economics, Elsevier, vol. 115(2), pages 515-527, October.
    6. Alexander Seitz & Hans Ehm & Renzo Akkerman & Sarah Osman, 2016. "A robust supply chain planning framework for revenue management in the semiconductor industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 15(6), pages 523-533, December.
    7. Pythagoras N. Petratos & Alessio Faccia, 2023. "Fake news, misinformation, disinformation and supply chain risks and disruptions: risk management and resilience using blockchain," Annals of Operations Research, Springer, vol. 327(2), pages 735-762, August.
    8. Uday Venkatadri & Shentao Wang & Ashok Srinivasan, 2021. "A Model for Demand Planning in Supply Chains with Congestion Effects," Logistics, MDPI, vol. 5(1), pages 1-24, January.
    9. Venkatadri, Uday & Srinivasan, Ashok & Montreuil, Benoit & Saraswat, Ashish, 2006. "Optimization-based decision support for order promising in supply chain networks," International Journal of Production Economics, Elsevier, vol. 103(1), pages 117-130, September.
    10. Comelli, Mickael & Féniès, Pierre & Tchernev, Nikolay, 2008. "A combined financial and physical flows evaluation for logistic process and tactical production planning: Application in a company supply chain," International Journal of Production Economics, Elsevier, vol. 112(1), pages 77-95, March.
    11. Hejn Nielsen, Erland, 2013. "Small sample uncertainty aspects in relation to bullwhip effect measurement," International Journal of Production Economics, Elsevier, vol. 146(2), pages 543-549.
    12. Mula, Josefa & Peidro, David & Díaz-Madroñero, Manuel & Vicens, Eduardo, 2010. "Mathematical programming models for supply chain production and transport planning," European Journal of Operational Research, Elsevier, vol. 204(3), pages 377-390, August.
    13. Chiang, David Ming-Huang & Wu, Andy Wei-Di, 2011. "Discrete-order admission ATP model with joint effect of margin and order size in a MTO environment," International Journal of Production Economics, Elsevier, vol. 133(2), pages 761-775, October.
    14. Afshin Mansouri, S. & Gallear, David & Askariazad, Mohammad H., 2012. "Decision support for build-to-order supply chain management through multiobjective optimization," International Journal of Production Economics, Elsevier, vol. 135(1), pages 24-36.
    15. Chung, S.H. & Lau, H.C.W. & Choy, K.L. & Ho, G.T.S. & Tse, Y.K., 2010. "Application of genetic approach for advanced planning in multi-factory environment," International Journal of Production Economics, Elsevier, vol. 127(2), pages 300-308, October.
    16. Tsai, Chih-Yang, 2011. "On delineating supply chain cash flow under collectionrisk," International Journal of Production Economics, Elsevier, vol. 129(1), pages 186-194, January.
    17. Li-Chih Wang & Chen-Yang Cheng & Wen-Kuan Wang, 2016. "Flexible supply network planning for hybrid shipment: a case study of memory module industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 444-458, January.
    18. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    19. Gössinger, Ralf & Kalkowski, Sonja, 2015. "Robust order promising with anticipated customer response," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 529-542.
    20. Gong, Qiguo & Lai, K.K. & Wang, Shouyang, 2008. "Supply chain networks: Closed Jackson network models and properties," International Journal of Production Economics, Elsevier, vol. 113(2), pages 567-574, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:117:y:2009:i:1:p:174-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.