IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v42y2021i1d10.1007_s10878-021-00733-1.html
   My bibliography  Save this article

Suboptimal sliding manifold For nonlinear supply chain with time delay

Author

Listed:
  • Sajjad Aslani Khiavi

    (Payame Noor University)

  • Hamid Khaloozadeh

    (K.N. Toosi University of Technology)

  • Fahimeh Soltanian

    (Payame Noor University)

Abstract

In this paper, a basic dynamic model of the supply chain system is constructed in which the oscillation problems caused by the time delay in remanufacturing, ordering, the disturbance of the system parameters are considered along with the customers’ demand estimation. Time delay in production systems affects the efficiency of supply chain and lead to the bullwhip effect. This paper proposes a new method according to the model structure for controlling the bullwhip effect based on state dependent Riccati equation (ESDRE) and designing suboptimal sliding manifolds for a nonlinear supply chain in the presence of input and state delays. A switching control scheme is obtained based on the designed suboptimal sliding manifold. It is proved that this control scheme can guarantee that the nonlinear supply chain system is asymptotically stable and understand soft switching among subsystems of the nonlinear supply chain to mitigate fluctuations in the system variables. The efficiency of suboptimal sliding manifold method was examined by comparing LQR method in the presence of various time delays. Also, simulation investigation in real supply chain proved this efficiency.

Suggested Citation

  • Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2021. "Suboptimal sliding manifold For nonlinear supply chain with time delay," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 151-173, July.
  • Handle: RePEc:spr:jcomop:v:42:y:2021:i:1:d:10.1007_s10878-021-00733-1
    DOI: 10.1007/s10878-021-00733-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00733-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00733-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    2. Beamon, Benita M., 1998. "Supply chain design and analysis:: Models and methods," International Journal of Production Economics, Elsevier, vol. 55(3), pages 281-294, August.
    3. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    4. Glock, Christoph H., 2012. "Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 37-44.
    5. Sajjad Aslani Khiavi & Hamid Khaloozadeh & Fahimeh Soltanian, 2019. "Nonlinear modeling and performance analysis of a closed-loop supply chain in the presence of stochastic noise," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 25(5), pages 499-521, September.
    6. Frank Chen & Zvi Drezner & Jennifer K. Ryan & David Simchi-Levi, 2000. "Quantifying the Bullwhip Effect in a Simple Supply Chain: The Impact of Forecasting, Lead Times, and Information," Management Science, INFORMS, vol. 46(3), pages 436-443, March.
    7. Park, Sukun & Lee, Tae-Eog & Sung, Chang Sup, 2010. "A three-level supply chain network design model with risk-pooling and lead times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 563-581, September.
    8. Leng, Mingming & Parlar, Mahmut, 2009. "Lead-time reduction in a two-level supply chain: Non-cooperative equilibria vs. coordination with a profit-sharing contract," International Journal of Production Economics, Elsevier, vol. 118(2), pages 521-544, April.
    9. Glock, C. H., 2012. "Lead time reduction strategies in a single-vendor-single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 57816, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    11. Pei, Jun & Pardalos, Panos M. & Liu, Xinbao & Fan, Wenjuan & Yang, Shanlin, 2015. "Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 244(1), pages 13-25.
    12. Zhang, Guoquan & Shang, Jennifer & Li, Wenli, 2011. "Collaborative production planning of supply chain under price and demand uncertainty," European Journal of Operational Research, Elsevier, vol. 215(3), pages 590-603, December.
    13. Zimmer, Kirstin, 2002. "Supply chain coordination with uncertain just-in-time delivery," International Journal of Production Economics, Elsevier, vol. 77(1), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Songtao Zhang & Yanting Hou & Siqi Zhang & Min Zhang, 2017. "Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times," Complexity, Hindawi, vol. 2017, pages 1-11, September.
    2. Heydari, Jafar, 2014. "Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 63(C), pages 44-58.
    3. Asif Iqbal Malik & Biswajit Sarkar, 2019. "Coordinating Supply-Chain Management under Stochastic Fuzzy Environment and Lead-Time Reduction," Mathematics, MDPI, vol. 7(5), pages 1-28, May.
    4. Zhai, Yue & Choi, Tsan-Ming & Shao, Saijun & Xu, Su Xiu & Huang, George Q., 2020. "Spatial-temporal hedging coordination in prefabricated housing production," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Navin K. Dev & Ravi Shankar & Angappa Gunasekaran & Lakshman S. Thakur, 2016. "A hybrid adaptive decision system for supply chain reconfiguration," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7100-7114, December.
    6. Asif Iqbal Malik & Biswajit Sarkar, 2020. "Coordination Supply Chain Management Under Flexible Manufacturing, Stochastic Leadtime Demand, and Mixture of Inventory," Mathematics, MDPI, vol. 8(6), pages 1-32, June.
    7. Hejn Nielsen, Erland, 2013. "Small sample uncertainty aspects in relation to bullwhip effect measurement," International Journal of Production Economics, Elsevier, vol. 146(2), pages 543-549.
    8. Huang, Shupeng & Potter, Andrew & Eyers, Daniel & Li, Qinyun, 2021. "The influence of online review adoption on the profitability of capacitated supply chains," Omega, Elsevier, vol. 105(C).
    9. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    10. Ponte, Borja & Costas, José & Puche, Julio & Pino, Raúl & de la Fuente, David, 2018. "The value of lead time reduction and stabilization: A comparison between traditional and collaborative supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 165-185.
    11. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    12. Ventura, José A. & Bunn, Kevin A. & Venegas, Bárbara B. & Duan, Lisha, 2021. "A coordination mechanism for supplier selection and order quantity allocation with price-sensitive demand and finite production rates," International Journal of Production Economics, Elsevier, vol. 233(C).
    13. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.
    14. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    15. Kamath, Narasimha B. & Roy, Rahul, 2007. "Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework," European Journal of Operational Research, Elsevier, vol. 179(2), pages 334-351, June.
    16. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    17. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
    18. Zhai, Yue & Hua, Guowei & Cheng, Meng & Cheng, T.C.E., 2023. "Production lead-time hedging and order allocation in an MTO supply chain," European Journal of Operational Research, Elsevier, vol. 311(3), pages 887-905.
    19. Bendre, Abhijit Bhagwan & Nielsen, Lars Relund, 2013. "Inventory control in a lost-sales setting with information about supply lead times," International Journal of Production Economics, Elsevier, vol. 142(2), pages 324-331.
    20. Castellano, Davide & Gallo, Mosè & Grassi, Andrea & Santillo, Liberatina C., 2019. "The effect of GHG emissions on production, inventory replenishment and routing decisions in a single vendor-multiple buyers supply chain," International Journal of Production Economics, Elsevier, vol. 218(C), pages 30-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:42:y:2021:i:1:d:10.1007_s10878-021-00733-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.