IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v658y2025ics0378437124007635.html
   My bibliography  Save this article

Intragroup dynamics and splitting characteristics of social group movement through a funnel-shaped bottleneck

Author

Listed:
  • Zhuang, Yifan
  • Zou, Xiaolei
  • Schadschneider, Andreas
  • Liu, Zhigang
  • Huang, Jiajun
  • Song, Xiaomin

Abstract

Social groups are common in crowd gatherings and events. In this study we explore the trajectories and interactions of groups consisting of more than 4 pedestrians. Although previous studies indicate that such groups have a tendency to split in free space, precise empirical data for bottleneck movement is still limited. Here we fill this gap by performing exploring experiments on the dynamics of groups of 5, 6 and 7 persons through funnel-shaped bottlenecks of two different widths. The intragroup dynamics and the splitting characteristics of groups are analyzed on macroscopic, mesoscopic and microscopic scales. The macroscopic scale results reveal that increasing bottleneck width improves group speed and reduces severe deformations. The bottleneck width significantly affects group shape, while group size significantly affects group speed in narrow bottlenecks. The mesoscopic scale results confirm the existence of mesoscopic components by identifying the heterogeneous bonds between each pair of adjacent sequence members, i.e. stable and unstable bonds. The sub-individual is only connected by unstable bonds and subgroup is formed of stable bonds. The reduction in bottleneck width negatively affects the average speed of subgroups but has little impact on their spatial requirements and members’ relative positions. So the stable spatial characteristics of subgroups are measured as the spatial threshold for the splitting of unstable bonds. The microscopic scale results investigate the split state of unstable bonds within the group. The spatial distributions of split states differ evidently between 5-person and 6, 7 persons groups. The split behavioral strategies of groups are more sensitive to intragroup spatial restriction for narrow bottleneck (0.8 m), but more sensitive to environmental restriction for wide bottleneck (1.5 m). The intragroup disturbance caused by splitting is assessed exploringly based on the concept of ‘energy conversion-spillover’. The results can help improve crowd management, better design of bottlenecks, and more realistic description of group dynamics in modeling approaches.

Suggested Citation

  • Zhuang, Yifan & Zou, Xiaolei & Schadschneider, Andreas & Liu, Zhigang & Huang, Jiajun & Song, Xiaomin, 2025. "Intragroup dynamics and splitting characteristics of social group movement through a funnel-shaped bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
  • Handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124007635
    DOI: 10.1016/j.physa.2024.130254
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124007635
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Libi & Shi, Qingxin & Qin, Huigui & Zhang, Ying & Shi, Yongqian, 2022. "Analysis of movement behavior of pedestrian social groups through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Nikolai W F Bode & Stefan Holl & Wolfgang Mehner & Armin Seyfried, 2015. "Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    3. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    4. von Krüchten, Cornelia & Schadschneider, Andreas, 2017. "Empirical study on social groups in pedestrian evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 129-141.
    5. Sun, Lishan & Luo, Wei & Yao, Liya & Qiu, Shi & Rong, Jian, 2017. "A comparative study of funnel shape bottlenecks in subway stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 14-27.
    6. repec:plo:pone00:0010047 is not listed on IDEAS
    7. Francesco Zanlungo & Zeynep Yücel & Takayuki Kanda, 2019. "Intrinsic group behaviour II: On the dependence of triad spatial dynamics on social and personal features; and on the effect of social interaction on small group dynamics," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-28, December.
    8. Zhang, Bosi & Chen, Wenyan & Ma, Xian & Qiu, Ping & Liu, Fupeng, 2020. "Experimental study on pedestrian behavior in a mixed crowd of individuals and groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Libi & Shi, Qingxin & Qin, Huigui & Zhang, Ying & Shi, Yongqian, 2022. "Analysis of movement behavior of pedestrian social groups through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. He, Yangjian & Fu, Libi & Chen, Qiyi & Zhang, Yu & Shen, Chenxin & Shi, Yongqian & Cao, Shuchao, 2024. "The effect of building bottlenecks on crowd dynamics involving individuals with simulated disabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
    4. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    5. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    6. Haghani, Milad & Sarvi, Majid, 2018. "Crowd behaviour and motion: Empirical methods," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 253-294.
    7. Ren, Xiangxia & Zhang, Jun & Song, Weiguo & Cao, Shuchao, 2021. "Mechanisms of passing through short exits for the elderly and young adults," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 195-213.
    8. Meiying Jiang & Qibing Jin & Lisheng Cheng, 2019. "Effects of Ticket-Checking Failure on Dynamics of Pedestrians at Multi-Exit Inspection Points with Various Layouts," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    9. Li, Na & Guo, Ren-Yong, 2020. "Simulation of bi-directional pedestrian flow through a bottleneck: Cell transmission model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Zhonghua Wei & Sinan Chu & Zhengde Huang & Shi Qiu & Qixuan Zhao, 2020. "Optimization Design of X-ray Conveyer Belt Length for Subway Security Check Systems in Beijing, China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    11. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    13. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
    14. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    15. Xie, Chuan-Zhi & Tang, Tie-Qiao & Hu, Peng-Cheng & Chen, Liang, 2022. "Observation and cellular-automaton based modeling of pedestrian behavior on an escalator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    16. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    17. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    18. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    19. Ding, Heng & Wang, Qiao & Chen, Juan & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Investigating pedestrian stepping characteristics via intrinsic trajectory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
    20. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124007635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.