IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v556y2020ics0378437120304209.html
   My bibliography  Save this article

Experimental study on pedestrian behavior in a mixed crowd of individuals and groups

Author

Listed:
  • Zhang, Bosi
  • Chen, Wenyan
  • Ma, Xian
  • Qiu, Ping
  • Liu, Fupeng

Abstract

The influences of groups on pedestrian behavior in a mixed crowd that comprises individuals and groups were investigated experimentally. The crowd comprised 20 pedestrians: some were composed into groups of three or four pedestrians (3-pedestrian and 4-pedestrian groups), and the others walked as individuals The walking speed and the walking behavior of pedestrians in the crowds were the main focus. Results showed that the walking speed of pedestrians – the​ individuals and group members in a mixed crowd – basically decreased compared with their walking speed in none-group crowd, and the decreasing of pedestrians’ walking speed became more obvious with the size of groups inside the mixed crowd. Basically, the decrease in the degree of walking speed was larger for female pedestrians than for the male pedestrians. However, in the mixed crowd conditions with the 3-pedestrian group, the walking speed of individuals with an initial location near the group might possibly be higher than that in the none-group crowd condition, which might be caused by the accelerating process for overtaking the group in front of them. This speed accelerating behavior was more remarkable among the male pedestrians in this study. In the mixed crowd conditions with the 4-pedestrian group, the overtaking of the group became more difficult for the individuals. The walking speed of a group in a crowd was lower than that in the free-walking environment because the group members had to pay more attention to maintain group relationships and not separate from each other in the crowd.

Suggested Citation

  • Zhang, Bosi & Chen, Wenyan & Ma, Xian & Qiu, Ping & Liu, Fupeng, 2020. "Experimental study on pedestrian behavior in a mixed crowd of individuals and groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  • Handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304209
    DOI: 10.1016/j.physa.2020.124814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120304209
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yaping & Li, Lihua & Zhang, Hui & Chen, Tao, 2017. "Experimental study on small group behavior and crowd dynamics in a tall office building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 488-500.
    2. Wang, Ziyang & Song, Bingxue & Qin, Yong & Zhu, Wei & Jia, Limin, 2013. "Effect of vertical grouping behavior on pedestrian evacuation efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4874-4883.
    3. Pereira, L.A. & Burgarelli, D. & Duczmal, L.H. & Cruz, F.R.B., 2017. "Emergency evacuation models based on cellular automata with route changes and group fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 97-110.
    4. Wang, Ziyang & Song, Bingxue & Qin, Yong & Jia, Limin, 2012. "Team-moving effect in bi-direction pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3119-3128.
    5. Li, Yan & Liu, Hong & Liu, Guang-peng & Li, Liang & Moore, Philip & Hu, Bin, 2017. "A grouping method based on grid density and relationship for crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 319-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinateder, Max & Warren, William H., 2021. "Exit choice during evacuation is influenced by both the size and proportion of the egressing crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    2. Sun, Qipeng & He, Chen & Wang, Yongjie & Liu, Hang & Ma, Fei & Wei, Xiao, 2022. "Reducing violation behaviors of pedestrians considering group interests of travelers at signalized crosswalk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    3. Huang, Rong & Zhao, Xuan & Yuan, Yufei & Yu, Qiang & Zhou, Chenyu & Daamen, Winnie, 2021. "Experimental study on evacuation behaviour of passengers in a high-deck coach: A Chinese case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    4. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Fu, Libi & Shi, Qingxin & Qin, Huigui & Zhang, Ying & Shi, Yongqian, 2022. "Analysis of movement behavior of pedestrian social groups through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Mendiate, Classio Joao & Nkurunziza, Alphonse & Machanguana, Constancio Augusto & Bernardo, Roberto, 2022. "Pedestrian travel behaviour and urban form: Comparing two small Mozambican cities," Journal of Transport Geography, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Feng, Jiaojiao & Wang, Jinghong & Li, Jia & Li, Jiachen & Xu, Shuangyan & Liu, Juan & Li, Jiapeng & Wang, Yan, 2022. "Study on the law of vertical evacuation behavior during earthquakes considering social relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    3. Can Liao & Kejun Zhu & Haixiang Guo & Jian Tang, 2019. "Simulation Research on Safe Flow Rate of Bidirectional Crowds Using Bayesian-Nash Equilibrium," Complexity, Hindawi, vol. 2019, pages 1-15, January.
    4. Gao, Dong Li & Xie, Wei & Ming Lee, Eric Wai, 2022. "Individual-level exit choice behaviour under uncertain risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    5. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.
    6. Liu, Weisong & Zhang, Jun & Rasa, Abdul Rahim & Li, Xudong & Ren, Xiangxia & Song, Weiguo, 2023. "Understanding step synchronization in social groups: A novel method to recognize group," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    7. Yudi Zhang & Lei He, 2022. "Research on the Characteristics and Influencing Factors of Community Residents’ Night Evacuation Behavior Based on Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    8. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    9. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    10. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    11. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    12. Yaping Ma & Xiaoying Liu & Feizhou Huo & Hui Li, 2022. "Analysis of Cooperation Behaviors and Crowd Dynamics during Pedestrian Evacuation with Group Existence," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    13. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    14. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    15. Zhiqiang Wang & Jing Huang & Huimin Wang & Jinle Kang & Weiwei Cao, 2020. "Analysis of Flood Evacuation Process in Vulnerable Community with Mutual Aid Mechanism: An Agent-Based Simulation Framework," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    16. Zilin Yang & Xinping Wang & Chang Su & Boying Li, 2022. "The Relationship between Employee Risk Communication and Non-Adaptive Evacuation Behavior in Chinese Hazardous Chemical Companies: The Mediating Role of Emotional Exhaustion and Risk Perception," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    17. Shi Sun & Cheng Sun & Dorine C. Duives & Serge P. Hoogendoorn, 2023. "Neural network model for predicting variation in walking dynamics of pedestrians in social groups," Transportation, Springer, vol. 50(3), pages 837-868, June.
    18. Yunyun Niu & Jieqiong Zhang & Yongpeng Zhang & Jianhua Xiao, 2019. "Modeling Evacuation of High-Rise Buildings Based on Intelligence Decision P System," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    19. Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
    20. Jiang, Yan-Qun & Zhou, Shu-Guang & Duan, Ya-Li & Huang, Xiao-Qian, 2023. "A viscous continuum model with smoke effect for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120304209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.