IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v608y2022ip1s0378437122008159.html
   My bibliography  Save this article

Analysis of movement behavior of pedestrian social groups through a bottleneck

Author

Listed:
  • Fu, Libi
  • Shi, Qingxin
  • Qin, Huigui
  • Zhang, Ying
  • Shi, Yongqian

Abstract

Pedestrian social groups are an essential part of a crowd. In emergency situations, they may become principal victims during evacuation from buildings, such as bottlenecks in corridors. However, empirical data on the dynamics of social groups through bottlenecks are limited. In this paper, a controlled experiment was performed to study movement features of social groups through a bottleneck with different widths (i.e., 0.8, 1.4 and 2.4 m). There were 60 participants in the experiment, forming four crowd compositions (i.e., 60 groups of singles, 30 groups of dyads, 20 groups of triads and 15 groups of four-person groups). After extracting their movement trajectories in the video recordings, offset angles, passing performance, interpersonal distances and angles in group walking, relative positions in social groups, etc. were analyzed. The results highlight that the negative effect of bottleneck width on instantaneous speed for larger groups is more significant than for smaller groups. The cooperative behavior of large groups is beneficial to the instantaneous speed of pedestrians under wide bottlenecks. The size of the groups has no evident influence on lane formation. Singles adjust their movement directions more flexibly, and the offset angles of large groups are smaller. Good passing performance can be reflected in large groups through wide bottlenecks. It is proved that interpersonal distances and angles between group members depend on the group size, bottleneck width and pedestrian flow state (free and congested flow). Under the limitation of narrow bottlenecks, the walking structures of large groups can lead to diverse walking structures. The phenomenon of recurring splitting and rejoining of pedestrian social groups can be observed. These findings are helpful for crowd management in buildings.

Suggested Citation

  • Fu, Libi & Shi, Qingxin & Qin, Huigui & Zhang, Ying & Shi, Yongqian, 2022. "Analysis of movement behavior of pedestrian social groups through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  • Handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008159
    DOI: 10.1016/j.physa.2022.128257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008159
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Ma, Yaping & Li, Lihua & Zhang, Hui & Chen, Tao, 2017. "Experimental study on small group behavior and crowd dynamics in a tall office building evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 488-500.
    3. Nikolai W F Bode & Stefan Holl & Wolfgang Mehner & Armin Seyfried, 2015. "Disentangling the Impact of Social Groups on Response Times and Movement Dynamics in Evacuations," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    4. von Krüchten, Cornelia & Schadschneider, Andreas, 2017. "Empirical study on social groups in pedestrian evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 129-141.
    5. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    6. Chen, Siyuan & Fu, Libi & Fang, Jie & Yang, Panyun, 2019. "The effect of obstacle layouts on pedestrian flow in corridors: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Francesco Zanlungo & Zeynep Yücel & Takayuki Kanda, 2019. "Intrinsic group behaviour II: On the dependence of triad spatial dynamics on social and personal features; and on the effect of social interaction on small group dynamics," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-28, December.
    8. Zhang, Bosi & Chen, Wenyan & Ma, Xian & Qiu, Ping & Liu, Fupeng, 2020. "Experimental study on pedestrian behavior in a mixed crowd of individuals and groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    10. Serge P. Hoogendoorn & W. Daamen, 2005. "Pedestrian Behavior at Bottlenecks," Transportation Science, INFORMS, vol. 39(2), pages 147-159, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Libi & Zhang, Ying & Qin, Huigui & Shi, Qingxin & Chen, Qiyi & Chen, Yunqian & Shi, Yongqian, 2023. "A modified social force model for studying nonlinear dynamics of pedestrian-e-bike mixed flow at a signalized crosswalk," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. Fu, Libi & Chen, Yunqian & Qin, Huigui & Chen, Qiyi & He, Yangjian & Shi, Yongqian, 2023. "Dynamics of merging flow involving luggage-laden pedestrians in a Y-shaped corridor: An experimental study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    3. Xue Lin & Long Cheng & Shuo Zhang & Qianling Wang, 2023. "Simulating the Effects of Gate Machines on Crowd Traffic Based on the Modified Social Force Model," Mathematics, MDPI, vol. 11(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    3. Feng, Jiaojiao & Wang, Jinghong & Li, Jia & Li, Jiachen & Xu, Shuangyan & Liu, Juan & Li, Jiapeng & Wang, Yan, 2022. "Study on the law of vertical evacuation behavior during earthquakes considering social relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    4. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    5. Yaping Ma & Xiaoying Liu & Feizhou Huo & Hui Li, 2022. "Analysis of Cooperation Behaviors and Crowd Dynamics during Pedestrian Evacuation with Group Existence," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    6. Wang, Weili & Zhang, Jingjing & Li, Haicheng & Xie, Qimiao, 2020. "Experimental study on unidirectional pedestrian flows in a corridor with a fixed obstacle and a temporary obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    8. Milad Haghani & Majid Sarvi & Zahra Shahhoseini & Maik Boltes, 2016. "How Simple Hypothetical-Choice Experiments Can Be Utilized to Learn Humans’ Navigational Escape Decisions in Emergencies," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-24, November.
    9. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    10. Zeng, Guang & Cao, Shuchao & Liu, Chi & Song, Weiguo, 2018. "Experimental and modeling study on relation of pedestrian step length and frequency under different headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 237-248.
    11. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    12. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    13. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    14. Huang, Shenshi & Zhang, Teng & Lo, Siuming & Lu, Shouxiang & Li, Changhai, 2018. "Experimental study of individual and single-file pedestrian movement in narrow seat aisle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1023-1033.
    15. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    17. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Li, Maosheng & Shu, Panpan & Xiao, Yao & Wang, Pu, 2021. "Modeling detour decision combined the tactical and operational layer based on perceived density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    19. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    20. Ye, Rui & Zeng, Yiping & Zeng, Guang & Huang, Zhongyi & Li, Xiaolian & Fang, Zhiming & Song, Weiguo, 2021. "Pedestrian single-file movement on stairs under different motivations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:608:y:2022:i:p1:s0378437122008159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.