IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122009268.html
   My bibliography  Save this article

Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction

Author

Listed:
  • Li, Xia
  • Xiao, Yuewen
  • Zhao, Xiaodong
  • Ma, Xinwei
  • Wang, Xintong

Abstract

Connected and autonomous vehicles (CAVs) are developing rapidly nowadays. In the near future, we may see human-driving vehicles (HVs) and CAVs running on the same road. The characteristics of human drivers and the interaction between HVs and CAVs, therefore, need to be further studied. All these factors will have a great impact on traffic operation. This paper aims to explore a modeling method to analyze the operation mechanism of mixed traffic flows of HVs and CAVs. Considering HV drivers’ cognitive behavioral characteristics and HV–CAV interaction effects, the forward and lateral movement rules of HVs and CAVs are proposed based on the Cellular Automata model. Then the fundamental diagram, congestion degree, lane-changing frequency, and time-spatial diagram are obtained by numerical simulation. The results show that the presence of CAVs is positively related to macroscopic traffic parameters, including velocity, flow and critical density. CAVs help to relieve traffic congestion and instabilities. The congestion degree of pure CAV traffic flow is about 1/3 that of pure HV traffic flow. When the CAV penetration rate is relatively low, the interaction between HV and CAV has a significant impact on traffic operation. Specifically, when the CAV penetration rate is below 0.5∼0.6, increasing the CAV penetration rate will increase the lane-changing frequency of the whole traffic flow.

Suggested Citation

  • Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009268
    DOI: 10.1016/j.physa.2022.128368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009268
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danish Farooq & Sarbast Moslem & Szabolcs Duleba, 2019. "Evaluation of Driver Behavior Criteria for Evolution of Sustainable Traffic Safety," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    2. Gong, Siyuan & Du, Lili, 2018. "Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 25-61.
    3. Jin, Shuang & Sun, Di-Hua & Zhao, Min & Li, Yang & Chen, Jin, 2020. "Modeling and stability analysis of mixed traffic with conventional and connected automated vehicles from cyber physical perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    4. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    5. Zhu, Liling & Tang, Yandong & Yang, Da, 2021. "Cellular automata-based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    6. Daniel Kaimann & Nadja Stroh†Maraun & Joe Cox, 2018. "Variety in the video game industry: An empirical study of the Wundt curve," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 39(3), pages 354-362, April.
    7. Gipps, P.G., 1981. "A behavioural car-following model for computer simulation," Transportation Research Part B: Methodological, Elsevier, vol. 15(2), pages 105-111, April.
    8. Ye, Lanhang & Yamamoto, Toshiyuki, 2019. "Evaluating the impact of connected and autonomous vehicles on traffic safety," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    9. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    10. Xinghua Hu & Mengyu Huang & Jianpu Guo, 2020. "Feature Analysis on Mixed Traffic Flow of Manually Driven and Autonomous Vehicles Based on Cellular Automata," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, November.
    11. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Muhammad Tanveer & Faizan Ahmad Kashmiri & Hassan Naeem & Huimin Yan & Xin Qi & Syed Muzammil Abbas Rizvi & Tianshi Wang & Huapu Lu, 2020. "An Assessment of Age and Gender Characteristics of Mixed Traffic with Autonomous and Manual Vehicles: A Cellular Automata Approach," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    14. Sharma, Anshuman & Zheng, Zuduo & Bhaskar, Ashish & Haque, Md. Mazharul, 2019. "Modelling car-following behaviour of connected vehicles with a focus on driver compliance," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 256-279.
    15. Elliott Middleton, 1986. "Some Testable Implications of a Preference for Subjective Novelty," Kyklos, Wiley Blackwell, vol. 39(3), pages 397-418, August.
    16. Lee, Yi-Ching & Momen, Ali & LaFreniere, Jennifer, 2021. "Attributions of social interactions: Driving among self-driving vs. conventional vehicles," Technology in Society, Elsevier, vol. 66(C).
    17. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yuanyuan & Wang, David Z.W. & Zhu, Feng, 2022. "Influence of CAVs platooning on intersection capacity under mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Bowen Gong & Fanting Wang & Ciyun Lin & Dayong Wu, 2022. "Modeling HDV and CAV Mixed Traffic Flow on a Foggy Two-Lane Highway with Cellular Automata and Game Theory Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    3. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Guangyang Hou, 2023. "Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Guo, Mengting & Bai, Yang & Li, Xia & Zhou, Wei & Wang, Chunyang & Ma, Xinwei & Gao, Huixin & Xiao, Yuewen, 2023. "Freeway capacity modeling and analysis for traffic mixed with human-driven and connected automated vehicles considering driver behavior characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    6. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Chen, Jianzhong & Liang, Huan & Li, Jing & Xu, Zhaoxin, 2021. "A novel distributed cooperative approach for mixed platoon consisting of connected and automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    8. Gu, Yewen & Goez, Julio C. & Mario, Guajardo & Wallace, Stein W., 2019. "Autonomous vessels: State of the art and potential opportunities in logistics," Discussion Papers 2019/6, Norwegian School of Economics, Department of Business and Management Science.
    9. Luo, Ruifa & Gu, Qiufan & Xu, Taorang & Hao, Huijun & Yao, Zhihong, 2022. "Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple influencing factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    10. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    11. Andrea Papu Carrone & Jeppe Rich & Christian Anker Vandet & Kun An, 2021. "Autonomous vehicles in mixed motorway traffic: capacity utilisation, impact and policy implications," Transportation, Springer, vol. 48(6), pages 2907-2938, December.
    12. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    13. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    14. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    15. Guan, Hao & Wang, Hua & Meng, Qiang & Mak, Chin Long, 2023. "Markov chain-based traffic analysis on platooning effect among mixed semi- and fully-autonomous vehicles in a freeway lane," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 176-202.
    16. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Chen, Yingda & Kong, Dewen & Sun, Lishan & Zhang, Tong & Song, Yongchang, 2022. "Fundamental diagram and stability analysis for heterogeneous traffic flow considering human-driven vehicle driver’s acceptance of cooperative adaptive cruise control vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    18. Liu, Qingchao & Cai, Yingfeng & Jiang, Haobin & Lu, Jian & Chen, Long, 2018. "Traffic state prediction using ISOMAP manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 532-541.
    19. Umberto Crisalli & Andrea Gemma & Marco Petrelli, 2023. "Investigating the Effects of Automated Vehicles on Large Urban Road Networks: Some Evidence from Rome," Sustainability, MDPI, vol. 15(13), pages 1-10, July.
    20. Zhang, Jiahe & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Li, Haijun, 2023. "Hybrid characteristics of heterogeneous traffic flow mixed with electric vehicles considering the amplitude of acceleration and deceleration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.