IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v571y2021ics0378437121001199.html
   My bibliography  Save this article

Passenger arrival distribution model and riding guidance on an urban rail transit platform

Author

Listed:
  • Ding, Heng
  • Di, Yunran
  • Zheng, Xiaoyan
  • Liu, Kai
  • Zhang, Weihua
  • Zheng, Lingling

Abstract

Existing methods to improve the operational efficiency and service level of urban rail transit (URT) systems focus on forecasting passenger flow in macro networks and optimizing metro vehicle operation strategies. Among the factors affecting passenger comfort in vehicles, the passenger arrival distribution is the most direct but is not sufficiently taken into account. This study provides a riding guidance method for passengers on the URT platform to improve the uniformity of the passenger distribution among carriages. First, a passenger arrival distribution model is proposed on the basis of the influences of the queue length at the door, the number of people in the carriage and the travel distance on the passengers’ choice of carriage. Second, taking the maximum spatial comfort degree of every passenger as an objective, a passenger riding guidance model on the URT platform is proposed. Hefei Metro Line 2 is taken as an example for the numerical case study, and the results show that the guidance method can balance the passenger flow distribution and improve the spatial comfort level of passengers when the passenger flow is approximately 65 to 135 persons per 5 min.

Suggested Citation

  • Ding, Heng & Di, Yunran & Zheng, Xiaoyan & Liu, Kai & Zhang, Weihua & Zheng, Lingling, 2021. "Passenger arrival distribution model and riding guidance on an urban rail transit platform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  • Handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121001199
    DOI: 10.1016/j.physa.2021.125847
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121001199
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125847?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
    3. Zhou, Min & Ge, Shichao & Liu, Jiali & Dong, Hairong & Wang, Fei-Yue, 2020. "Field observation and analysis of waiting passengers at subway platform — A case study of Beijing subway stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    4. Qu, Yunchao & Xiao, Yao & Liu, Hao & Yin, Haodong & Wu, Jianjun & Qu, Qiushi & Li, Daqing & Tang, Tao, 2019. "Analyzing crowd dynamic characteristics of boarding and alighting process in urban metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    6. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    7. Haywood, Luke & Koning, Martin & Prud'homme, Remy, 2018. "The economic cost of subway congestion: Estimates from Paris," Economics of Transportation, Elsevier, vol. 14(C), pages 1-8.
    8. Li, Chuan-Yao & Yang, Rui-Yu & Xu, Guang-ming, 2019. "Impacts of group behavior on boarding process at the platform of high speed railway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. de Oña, Juan & de Oña, Rocío & Eboli, Laura & Mazzulla, Gabriella, 2013. "Perceived service quality in bus transit service: A structural equation approach," Transport Policy, Elsevier, vol. 29(C), pages 219-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Zhongxing & Wang, Heng & Liu, Weiming & Peng, Liru, 2023. "Toward real-time congestion measurement of passenger flow on platform screen doors based on surveillance videos analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    2. Yu, Liping & Liu, Huiran & Fang, Zhiming & Ye, Rui & Huang, Zhongyi & You, Yayun, 2023. "A new approach on passenger flow assignment with multi-connected agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    3. Huang, Kang & Wu, Jianjun & Sun, Huijun & Yang, Xin & Gao, Ziyou & Feng, Xujie, 2022. "Timetable synchronization optimization in a subway–bus network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    3. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    4. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2019. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 1-19.
    5. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    6. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    7. Yung-Tsan Jou & Charmine Sheena Saflor & Klint Allen Mariñas & Michael Nayat Young, 2023. "Determining Factors Affecting Perceived Customer Satisfaction on Public Utility Bus System in Occidental Mindoro, Philippines: A Case Study on Service Quality Assessment during Major Disruptions," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    8. Allen, Jaime & Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella & Ortúzar, Juan de Dios, 2019. "The role of critical incidents and involvement in transit satisfaction and loyalty," Transport Policy, Elsevier, vol. 75(C), pages 57-69.
    9. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    10. Hongjun Cui & Mingzhi Li & Minqing Zhu & Xinwei Ma, 2023. "Investigating the Impacts of Urban–Rural Bus Service Quality on Rural Residents’ Travel Choices Using an SEM–MNL Integration Model," Sustainability, MDPI, vol. 15(15), pages 1-22, August.
    11. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    12. Chatzigeorgiou, Chryssoula & Christou, Evangelos & Simeli, Ioanna, 2017. "Delegate satisfaction from conference service quality and its impact on future behavioural intentions," MPRA Paper 93933, University Library of Munich, Germany.
    13. Ziyu Wu & Chunhai Gao & Tao Tang, 2021. "An Optimal Train Speed Profile Planning Method for Induction Motor Traction System," Energies, MDPI, vol. 14(16), pages 1-14, August.
    14. Esmailpour, Javad & Aghabayk, Kayvan & Aghajanzadeh, Mohammad & De Gruyter, Chris, 2022. "Has COVID-19 changed our loyalty towards public transport? Understanding the moderating role of the pandemic in the relationship between service quality, customer satisfaction and loyalty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 80-103.
    15. Li, Jiajie & Bai, Yun & Chen, Yao & Yang, Lingling & Wang, Qian, 2022. "A two-stage stochastic optimization model for integrated tram timetable and speed control with uncertain dwell times," Energy, Elsevier, vol. 260(C).
    16. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2019. "The relationship between norms, satisfaction and public transport use: A comparison across six European cities using structural equation modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 37-57.
    17. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    18. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    19. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    20. Carolina Silva Costa & Cira Souza Pitombo & Felipe Lobo Umbelino de Souza, 2022. "Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period," Sustainability, MDPI, vol. 14(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121001199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.