IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v497y2018icp41-51.html
   My bibliography  Save this article

Time series analysis of S&P 500 index: A horizontal visibility graph approach

Author

Listed:
  • Vamvakaris, Michail D.
  • Pantelous, Athanasios A.
  • Zuev, Konstantin M.

Abstract

The behavior of stock prices has been thoroughly studied throughout the last century, and contradictory results have been reported in the corresponding literature. In this paper, a network theoretical approach is provided to investigate how crises affected the behavior of US stock prices. We analyze high frequency data from S&P500 via the Horizontal Visibility Graph method, and find that all major crises that took place worldwide in the last twenty years, affected significantly the behavior of the price-index. Nevertheless, we observe that each of those crises impacted the index in a different way and magnitude. Interestingly, our results suggest that the predictability of the price-index series increases during the periods of crises.

Suggested Citation

  • Vamvakaris, Michail D. & Pantelous, Athanasios A. & Zuev, Konstantin M., 2018. "Time series analysis of S&P 500 index: A horizontal visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 41-51.
  • Handle: RePEc:eee:phsmap:v:497:y:2018:i:c:p:41-51
    DOI: 10.1016/j.physa.2018.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118300104
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    2. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," Papers physics/0701030, arXiv.org.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2015. "Emergence of statistically validated financial intraday lead-lag relationships," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1375-1386, August.
    5. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    6. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    7. Birch, Jenna & Pantelous, Athanasios A. & Zuev, Konstantin, 2015. "The maximum number of 3- and 4-cliques within a planar maximally filtered graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 221-229.
    8. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    9. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    10. Mishra, Ritesh Kumar & Sehgal, Sanjay & Bhanumurthy, N.R., 2011. "A search for long-range dependence and chaotic structure in Indian stock market," Review of Financial Economics, Elsevier, vol. 20(2), pages 96-104, May.
    11. D. Garlaschelli & T. Di Matteo & T. Aste & G. Caldarelli & M. I. Loffredo, 2007. "Interplay between topology and dynamics in the World Trade Web," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 159-164, May.
    12. Hinich, Melvin J & Patterson, Douglas M, 1985. "Evidence of Nonlinearity in Daily Stock Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(1), pages 69-77, January.
    13. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
    14. Temizsoy, Asena & Iori, Giulia & Montes-Rojas, Gabriel, 2017. "Network centrality and funding rates in the e-MID interbank market," Journal of Financial Stability, Elsevier, vol. 33(C), pages 346-365.
    15. Precup, Ovidiu V. & Iori, Giulia, 2004. "A comparison of high-frequency cross-correlation measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 252-256.
    16. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    17. Iori, Giulia & De Masi, Giulia & Precup, Ovidiu Vasile & Gabbi, Giampaolo & Caldarelli, Guido, 2008. "A network analysis of the Italian overnight money market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 259-278, January.
    18. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    19. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    20. Jenna Birch & Athanasios A. Pantelous & Kimmo Soramäki, 2016. "Analysis of Correlation Based Networks Representing DAX 30 Stock Price Returns," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 501-525, April.
    21. Aste, T. & Di Matteo, T., 2006. "Dynamical networks from correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 156-161.
    22. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    23. Gutin, Gregory & Mansour, Toufik & Severini, Simone, 2011. "A characterization of horizontal visibility graphs and combinatorics on words," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2421-2428.
    24. McKenzie, Michael D., 2001. "Chaotic behavior in national stock market indices: New evidence from the close returns test," Global Finance Journal, Elsevier, vol. 12(1), pages 35-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandubete, Julio E. & Escot, Lorenzo, 2020. "Chaotic signals inside some tick-by-tick financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Peng-Fei Dai & Xiong Xiong & Wei-Xing Zhou, 2020. "Visibility graph analysis of economy policy uncertainty indices," Papers 2007.12880, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:497:y:2018:i:c:p:41-51. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.