IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0306694.html
   My bibliography  Save this article

Multiple serial correlations in global air temperature anomaly time series

Author

Listed:
  • Meng Gao
  • Xiaoyu Fang
  • Ruijun Ge
  • You-ping Fan
  • Yueqi Wang

Abstract

Serial correlations within temperature time series serve as indicators of the temporal consistency of climate events. This study delves into the serial correlations embedded in global surface air temperature (SAT) data. Initially, we preprocess the SAT time series to eradicate seasonal patterns and linear trends, resulting in the SAT anomaly time series, which encapsulates the inherent variability of Earth’s climate system. Employing diverse statistical techniques, we identify three distinct types of serial correlations: short-term, long-term, and nonlinear. To identify short-term correlations, we utilize the first-order autoregressive model, AR(1), revealing a global pattern that can be partially attributed to atmospheric Rossby waves in extratropical regions and the Eastern Pacific warm pool. For long-term correlations, we adopt the standard detrended fluctuation analysis, finding that the global pattern aligns with long-term climate variability, such as the El Niño-Southern Oscillation (ENSO) over the Eastern Pacific. Furthermore, we apply the horizontal visibility graph (HVG) algorithm to transform the SAT anomaly time series into complex networks. The topological parameters of these networks aptly capture the long-term correlations present in the data. Additionally, we introduce a novel topological parameter, Δσ, to detect nonlinear correlations. The statistical significance of this parameter is rigorously tested using the Monte Carlo method, simulating fractional Brownian motion and fractional Gaussian noise processes with a predefined DFA exponent to estimate confidence intervals. In conclusion, serial correlations are universal in global SAT time series and the presence of these serial correlations should be considered carefully in climate sciences.

Suggested Citation

  • Meng Gao & Xiaoyu Fang & Ruijun Ge & You-ping Fan & Yueqi Wang, 2024. "Multiple serial correlations in global air temperature anomaly time series," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-20, July.
  • Handle: RePEc:plo:pone00:0306694
    DOI: 10.1371/journal.pone.0306694
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0306694
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0306694&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0306694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J Alberto Rosales-Pérez & Efrain Canto-Lugo & David Valdés-Lozano & Rodrigo Huerta-Quintanilla, 2019. "Temperature time series analysis at Yucatan using natural and horizontal visibility algorithms," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    2. Jingyuan Li & David W. J. Thompson, 2021. "Widespread changes in surface temperature persistence under climate change," Nature, Nature, vol. 599(7885), pages 425-430, November.
    3. Gao, Meng & Zhang, Aidi & Zhang, Han & Pang, Yufei & Wang, Yueqi, 2022. "Multifractality of global sea level heights in the satellite altimeter-era," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    4. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    5. Liu, Keshi & Weng, Tongfeng & Gu, Changgui & Yang, Huijie, 2020. "Visibility graph analysis of Bitcoin price series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    6. Monetti, Roberto A. & Havlin, Shlomo & Bunde, Armin, 2003. "Long-term persistence in the sea surface temperature fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 581-589.
    7. Víctor Muñoz & N Elizabeth Garcés, 2021. "Analysis of pulsating variable stars using the visibility graph algorithm," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-32, November.
    8. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    9. Vamvakaris, Michail D. & Pantelous, Athanasios A. & Zuev, Konstantin M., 2018. "Time series analysis of S&P 500 index: A horizontal visibility graph approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 41-51.
    10. Sadegh Movahed, M. & Hermanis, Evalds, 2008. "Fractal analysis of river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 915-932.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui, Jun & Zheng, Zeyu & Fu, Dianzheng & Fu, Yang & Liu, Zhi, 2021. "Long-term correlations and multifractality of toll-free calls in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Liu, Chenggong & Shang, Pengjian & Feng, Guochen, 2017. "The high order dispersion analysis based on first-passage-time probability in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 1-9.
    3. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    4. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Gao, Meng & Ge, Ruijun, 2024. "Mapping time series into signed networks via horizontal visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    7. Federica Alfani & Vasco Molini & Giacomo Pallante & Alessandro PalmaGran, 2024. "Job displacement and reallocation failure. Evidence from climate shocks in Morocco," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(1), pages 1-31.
    8. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    9. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    10. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    11. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    12. Shangrui Wang & Guohua Wang & Yiming Xiao, 2024. "How environmental policies affect personal willingness to pay for environmental protection: an investigation of interpretative and resource effects," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 1591-1613, January.
    13. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Donatella Baiardi, 2021. "What do you think about climate change?," Working Papers 477, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
    15. Yi Yang & Hai Lin & Yi Xu & Hang Pan & Guangtao Dong & Jianping Tang, 2025. "Future projections of precipitation extremes over East Asia based on a deep learning downscaled CMIP6 high-resolution (0.1°) dataset," Climatic Change, Springer, vol. 178(1), pages 1-20, January.
    16. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    17. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    18. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    19. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Mulligan, Robert F., 2017. "The multifractal character of capacity utilization over the business cycle: An application of Hurst signature analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 147-152.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.