IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37554-1.html
   My bibliography  Save this article

The most at-risk regions in the world for high-impact heatwaves

Author

Listed:
  • Vikki Thompson

    (University of Bristol)

  • Dann Mitchell

    (University of Bristol)

  • Gabriele C. Hegerl

    (University of Edinburgh)

  • Matthew Collins

    (University of Exeter)

  • Nicholas J. Leach

    (University of Oxford
    Climate X, 1st Floor)

  • Julia M. Slingo

    (University of Bristol)

Abstract

Heatwaves are becoming more frequent under climate change and can lead to thousands of excess deaths. Adaptation to extreme weather events often occurs in response to an event, with communities learning fast following unexpectedly impactful events. Using extreme value statistics, here we show where regional temperature records are statistically likely to be exceeded, and therefore communities might be more at-risk. In 31% of regions examined, the observed daily maximum temperature record is exceptional. Climate models suggest that similar behaviour can occur in any region. In some regions, such as Afghanistan and parts of Central America, this is a particular problem - not only have they the potential for far more extreme heatwaves than experienced, but their population is growing and increasingly exposed because of limited healthcare and energy resources. We urge policy makers in vulnerable regions to consider if heat action plans are sufficient for what might come.

Suggested Citation

  • Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37554-1
    DOI: 10.1038/s41467-023-37554-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37554-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37554-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Ciavarella & Daniel Cotterill & Peter Stott & Sarah Kew & Sjoukje Philip & Geert Jan Oldenborgh & Amalie Skålevåg & Philip Lorenz & Yoann Robin & Friederike Otto & Mathias Hauser & Sonia I. Sen, 2021. "Prolonged Siberian heat of 2020 almost impossible without human influence," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    2. Vikki Thompson & Nick J. Dunstone & Adam A. Scaife & Doug M. Smith & Julia M. Slingo & Simon Brown & Stephen E. Belcher, 2017. "High risk of unprecedented UK rainfall in the current climate," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    3. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(8), pages 791-791, August.
    4. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(4), pages 277-286, April.
    5. Geert Jan Oldenborgh & Karin Wiel & Sarah Kew & Sjoukje Philip & Friederike Otto & Robert Vautard & Andrew King & Fraser Lott & Julie Arrighi & Roop Singh & Maarten Aalst, 2021. "Pathways and pitfalls in extreme event attribution," Climatic Change, Springer, vol. 166(1), pages 1-27, May.
    6. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    7. Luke J. Harrington & Friederike E. L. Otto, 2020. "Reconciling theory with the reality of African heatwaves," Nature Climate Change, Nature, vol. 10(9), pages 796-798, September.
    8. Dáithí A. Stone, 2019. "A hierarchical collection of political/economic regions for analysis of climate extremes," Climatic Change, Springer, vol. 155(4), pages 639-656, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shijie Zhou & Ping Huang & Lin Wang & Kaiming Hu & Gang Huang & Peng Hu, 2024. "Robust changes in global subtropical circulation under greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Jisesh Sethunadh & F. W. Letson & R. J. Barthelmie & S. C. Pryor, 2023. "Assessing the impact of global warming on windstorms in the northeastern United States using the pseudo-global-warming method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2807-2834, July.
    7. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Rachel H. White & Sam Anderson & James F. Booth & Ginni Braich & Christina Draeger & Cuiyi Fei & Christopher D. G. Harley & Sarah B. Henderson & Matthias Jakob & Carie-Ann Lau & Lualawi Mareshet Admas, 2023. "The unprecedented Pacific Northwest heatwave of June 2021," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Nico, Gianluigi & Azzarri, Carlo, 2022. "Weather variability and extreme shocks in Africa: Are female or male farmers more affected?," IFPRI discussion papers 2115, International Food Policy Research Institute (IFPRI).
    14. Sihan Li & Friederike E. L. Otto, 2022. "The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis," Climatic Change, Springer, vol. 172(1), pages 1-19, May.
    15. Dirk Olonscheck & Andrew P. Schurer & Lucie Lücke & Gabriele C. Hegerl, 2021. "Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Karen A. McKinnon, 2022. "Discussion on “A combined estimate of global temperature”," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    18. Yiqun Tian & Shineng Hu & Clara Deser, 2023. "Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Juan Antonio Rivera & Paola A. Arias & Anna A. Sörensson & Mariam Zachariah & Clair Barnes & Sjoukje Philip & Sarah Kew & Robert Vautard & Gerbrand Koren & Izidine Pinto & Maja Vahlberg & Roop Singh &, 2023. "2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change," Climatic Change, Springer, vol. 176(8), pages 1-23, August.
    20. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37554-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.