IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38510-9.html
   My bibliography  Save this article

Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions

Author

Listed:
  • Xuezhi Tan

    (Sun Yat-sen University
    Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai))

  • Xinxin Wu

    (Sun Yat-sen University)

  • Zeqin Huang

    (Sun Yat-sen University)

  • Jianyu Fu

    (Sun Yat-sen University)

  • Xuejin Tan

    (Sun Yat-sen University)

  • Simin Deng

    (Sun Yat-sen University)

  • Yaxin Liu

    (Sun Yat-sen University)

  • Thian Yew Gan

    (University of Alberta)

  • Bingjun Liu

    (Sun Yat-sen University)

Abstract

Precipitation whiplash, including abrupt shifts between wet and dry extremes, can cause large adverse impacts on human and natural systems. Here we quantify observed and projected changes in characteristics of sub-seasonal precipitation whiplash and investigate the role of individual anthropogenic influences on these changes. Results show that the occurrence frequency of global precipitation whiplash is projected to be 2.56 ± 0.16 times higher than in 1979–2019 by the end of the 21st Century, with increasingly rapid and intense transitions between two extremes. The most dramatic increases of whiplash show in the polar and monsoon regions. Changes in precipitation whiplash show a much higher percentage change than precipitation totals. In historical simulations, anthropogenic greenhouse gas (GHG) and aerosol emissions have increased and decreased precipitation whiplash occurrences, respectively. By 2079, anthropogenic GHGs are projected to increase 55 ± 4% of the occurrences risk of precipitation whiplash, which is driven by shifts in circulation patterns conducive to precipitation extremes.

Suggested Citation

  • Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38510-9
    DOI: 10.1038/s41467-023-38510-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38510-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38510-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danielle Touma & Samantha Stevenson & Flavio Lehner & Sloan Coats, 2021. "Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Angeline G. Pendergrass & Gerald A. Meehl & Roger Pulwarty & Mike Hobbins & Andrew Hoell & Amir AghaKouchak & Céline J. W. Bonfils & Ailie J. E. Gallant & Martin Hoerling & David Hoffmann & Laurna Kaa, 2020. "Flash droughts present a new challenge for subseasonal-to-seasonal prediction," Nature Climate Change, Nature, vol. 10(3), pages 191-199, March.
    3. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    4. Daniel L. Swain & Baird Langenbrunner & J. David Neelin & Alex Hall, 2018. "Increasing precipitation volatility in twenty-first-century California," Nature Climate Change, Nature, vol. 8(5), pages 427-433, May.
    5. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    6. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Publisher Correction: Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(8), pages 791-791, August.
    7. C. Deser & F. Lehner & K. B. Rodgers & T. Ault & T. L. Delworth & P. N. DiNezio & A. Fiore & C. Frankignoul & J. C. Fyfe & D. E. Horton & J. E. Kay & R. Knutti & N. S. Lovenduski & J. Marotzke & K. A., 2020. "Insights from Earth system model initial-condition large ensembles and future prospects," Nature Climate Change, Nature, vol. 10(4), pages 277-286, April.
    8. Geeta G. Persad & Ken Caldeira, 2018. "Divergent global-scale temperature effects from identical aerosols emitted in different regions," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijie Zhou & Ping Huang & Lin Wang & Kaiming Hu & Gang Huang & Peng Hu, 2024. "Robust changes in global subtropical circulation under greenhouse warming," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Jisesh Sethunadh & F. W. Letson & R. J. Barthelmie & S. C. Pryor, 2023. "Assessing the impact of global warming on windstorms in the northeastern United States using the pseudo-global-warming method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2807-2834, July.
    5. Mingna Wu & Tianjun Zhou & Chao Li & Hongmei Li & Xiaolong Chen & Bo Wu & Wenxia Zhang & Lixia Zhang, 2021. "A very likely weakening of Pacific Walker Circulation in constrained near-future projections," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yangyang Xu & Lei Lin, 2017. "Pattern scaling based projections for precipitation and potential evapotranspiration: sensitivity to composition of GHGs and aerosols forcing," Climatic Change, Springer, vol. 140(3), pages 635-647, February.
    9. Jinling Piao & Wen Chen & Shangfeng Chen & Hainan Gong & Lin Wang, 2021. "Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models," Climatic Change, Springer, vol. 169(3), pages 1-24, December.
    10. Lu Dong & L. Ruby Leung & Fengfei Song & Jian Lu, 2021. "Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. B. H. Samset & C. Zhou & J. S. Fuglestvedt & M. T. Lund & J. Marotzke & M. D. Zelinka, 2022. "Earlier emergence of a temperature response to mitigation by filtering annual variability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Nico, Gianluigi & Azzarri, Carlo, 2022. "Weather variability and extreme shocks in Africa: Are female or male farmers more affected?," IFPRI discussion papers 2115, International Food Policy Research Institute (IFPRI).
    13. Dirk Olonscheck & Andrew P. Schurer & Lucie Lücke & Gabriele C. Hegerl, 2021. "Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Karen A. McKinnon, 2022. "Discussion on “A combined estimate of global temperature”," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
    16. Yiqun Tian & Shineng Hu & Clara Deser, 2023. "Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Miranda J. Fix & Daniel Cooley & Stephan R. Sain & Claudia Tebaldi, 2018. "A comparison of U.S. precipitation extremes under RCP8.5 and RCP4.5 with an application of pattern scaling," Climatic Change, Springer, vol. 146(3), pages 335-347, February.
    18. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Friedrich A. Burger & Jens Terhaar & Thomas L. Frölicher, 2022. "Compound marine heatwaves and ocean acidity extremes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Wenxia Zhang & Kalli Furtado & Tianjun Zhou & Peili Wu & Xiaolong Chen, 2022. "Constraining extreme precipitation projections using past precipitation variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38510-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.