IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36289-3.html
   My bibliography  Save this article

The unprecedented Pacific Northwest heatwave of June 2021

Author

Listed:
  • Rachel H. White

    (University of British Columbia)

  • Sam Anderson

    (University of British Columbia)

  • James F. Booth

    (City College of New York
    City University of New York)

  • Ginni Braich

    (University of British Columbia)

  • Christina Draeger

    (University of British Columbia)

  • Cuiyi Fei

    (University of British Columbia)

  • Christopher D. G. Harley

    (University of British Columbia)

  • Sarah B. Henderson

    (British Columbia Centre for Disease Control (BCCDC)
    University of British Columbia)

  • Matthias Jakob

    (University of British Columbia
    BCG Engineering Inc)

  • Carie-Ann Lau

    (BCG Engineering Inc)

  • Lualawi Mareshet Admasu

    (University of British Columbia)

  • Veeshan Narinesingh

    (Princeton University)

  • Christopher Rodell

    (University of British Columbia)

  • Eliott Roocroft

    (University of British Columbia)

  • Kate R. Weinberger

    (University of British Columbia)

  • Greg West

    (BC Hydro)

Abstract

In late June 2021 a heatwave of unprecedented magnitude impacted the Pacific Northwest region of Canada and the United States. Many locations broke all-time maximum temperature records by more than 5 °C, and the Canadian national temperature record was broken by 4.6 °C, with a new record temperature of 49.6 °C. Here, we provide a comprehensive summary of this event and its impacts. Upstream diabatic heating played a key role in the magnitude of this anomaly. Weather forecasts provided advanced notice of the event, while sub-seasonal forecasts showed an increased likelihood of a heat extreme with lead times of 10-20 days. The impacts of this event were catastrophic, including hundreds of attributable deaths across the Pacific Northwest, mass-mortalities of marine life, reduced crop and fruit yields, river flooding from rapid snow and glacier melt, and a substantial increase in wildfires—the latter contributing to landslides in the months following. These impacts provide examples we can learn from and a vivid depiction of how climate change can be so devastating.

Suggested Citation

  • Rachel H. White & Sam Anderson & James F. Booth & Ginni Braich & Christina Draeger & Cuiyi Fei & Christopher D. G. Harley & Sarah B. Henderson & Matthias Jakob & Carie-Ann Lau & Lualawi Mareshet Admas, 2023. "The unprecedented Pacific Northwest heatwave of June 2021," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36289-3
    DOI: 10.1038/s41467-023-36289-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36289-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. M. Smith & R. Eade & M. B. Andrews & H. Ayres & A. Clark & S. Chripko & C. Deser & N. J. Dunstone & J. García-Serrano & G. Gastineau & L. S. Graff & S. C. Hardiman & B. He & L. Hermanson & T. Jung , 2022. "Robust but weak winter atmospheric circulation response to future Arctic sea ice loss," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Sam Anderson & Valentina Radić, 2020. "Identification of local water resource vulnerability to rapid deglaciation in Alberta," Nature Climate Change, Nature, vol. 10(10), pages 933-938, October.
    3. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Stefano Orlando & Claudia Mosconi & Carolina De Santo & Leonardo Emberti Gialloreti & Maria Chiara Inzerilli & Olga Madaro & Sandro Mancinelli & Fausto Ciccacci & Maria Cristina Marazzi & Leonardo Pal, 2021. "The Effectiveness of Intervening on Social Isolation to Reduce Mortality during Heat Waves in Aged Population: A Retrospective Ecological Study," IJERPH, MDPI, vol. 18(21), pages 1-10, November.
    5. Geert Jan Oldenborgh & Karin Wiel & Sarah Kew & Sjoukje Philip & Friederike Otto & Robert Vautard & Andrew King & Fraser Lott & Julie Arrighi & Roop Singh & Maarten Aalst, 2021. "Pathways and pitfalls in extreme event attribution," Climatic Change, Springer, vol. 166(1), pages 1-27, May.
    6. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Donatella Baiardi, 2021. "What do you think about climate change?," Working Papers 477, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
    3. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Guy Jackson, 2023. "Environmental subjectivities and experiences of climate extreme-driven loss and damage in northern Australia," Climatic Change, Springer, vol. 176(7), pages 1-21, July.
    5. James E. Overland, 2021. "Rare events in the Arctic," Climatic Change, Springer, vol. 168(3), pages 1-13, October.
    6. Marco Grasso, 2022. "Legitimacy and procedural justice: how might stratospheric aerosol injection function in the public interest?," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    7. Henrik Thorén & Johannes Persson & Lennart Olsson, 2021. "A pluralist approach to epistemic dilemmas in event attribution science," Climatic Change, Springer, vol. 169(1), pages 1-17, November.
    8. Shan-e-hyder Soomro & Xiaotao Shi & Jiali Guo & Caihong Hu & Haider M. Zwain & Chengshuai Liu & Muhammad Zeb Khan & Chaojie Niu & Chenchen Zhao & Zubair Ahmed, 2023. "Appraisal of climate change and source of heavy metals, sediments in water of the Kunhar River watershed, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2191-2209, March.
    9. Theodore G. Shepherd & Elisabeth A. Lloyd, 2021. "Meaningful climate science," Climatic Change, Springer, vol. 169(1), pages 1-16, November.
    10. Rebecca Newman & Ilan Noy, 2023. "The global costs of extreme weather that are attributable to climate change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Ben Clarke & Friederike Otto & Richard Jones, 2023. "When don’t we need a new extreme event attribution study?," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    12. Sihan Li & Friederike E. L. Otto, 2022. "The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis," Climatic Change, Springer, vol. 172(1), pages 1-19, May.
    13. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Kelly Wanser & Sarah J. Doherty & James W. Hurrell & Alex Wong, 2022. "Near-term climate risks and sunlight reflection modification: a roadmap approach for physical sciences research," Climatic Change, Springer, vol. 174(3), pages 1-20, October.
    16. Fahad Alzahrani & Ousmane Seidou & Abdullah Alodah, 2022. "Assessment and Improvement of IDF Generation Algorithms Used in the IDF_CC Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4591-4606, September.
    17. Robert Vautard & Julien Cattiaux & Tamara Happé & Jitendra Singh & Rémy Bonnet & Christophe Cassou & Dim Coumou & Fabio D’Andrea & Davide Faranda & Erich Fischer & Aurélien Ribes & Sebastian Sippel & , 2023. "Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    19. Donatella Baiardi, 2021. "What do you think about climate change?," Working Paper series 21-16, Rimini Centre for Economic Analysis.
    20. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.