IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p759-d1055427.html
   My bibliography  Save this article

Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature

Author

Listed:
  • Jorge Castillo-Mateo

    (Department of Statistical Methods, University of Zaragoza, 50009 Zaragoza, Spain)

  • Jesús Asín

    (Department of Statistical Methods, University of Zaragoza, 50009 Zaragoza, Spain)

  • Ana C. Cebrián

    (Department of Statistical Methods, University of Zaragoza, 50009 Zaragoza, Spain)

  • Jesús Mateo-Lázaro

    (Department of Earth Sciences, University of Zaragoza, 50009 Zaragoza, Spain)

  • Jesús Abaurrea

    (Department of Statistical Methods, University of Zaragoza, 50009 Zaragoza, Spain)

Abstract

In many applications, interest focuses on assessing relationships between covariates and the extremes of the distribution of a continuous response. For example, in climate studies, a usual approach to assess climate change has been based on the analysis of annual maximum data. Using the generalized extreme value (GEV) distribution, we can model trends in the annual maximum temperature using the high number of available atmospheric covariates. However, there is typically uncertainty in which of the many candidate covariates should be included. Bayesian methods for variable selection are very useful to identify important covariates. However, such methods are currently very limited for moderately high dimensional variable selection in GEV regression. We propose a Bayesian method for variable selection based on a stochastic search variable selection (SSVS) algorithm proposed for posterior computation. The method is applied to the selection of atmospheric covariates in annual maximum temperature series in three Spanish stations.

Suggested Citation

  • Jorge Castillo-Mateo & Jesús Asín & Ana C. Cebrián & Jesús Mateo-Lázaro & Jesús Abaurrea, 2023. "Bayesian Variable Selection in Generalized Extreme Value Regression: Modeling Annual Maximum Temperature," Mathematics, MDPI, vol. 11(3), pages 1-19, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:759-:d:1055427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/759/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/759/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petra Friederichs & Thordis L. Thorarinsdottir, 2012. "Forecast verification for extreme value distributions with an application to probabilistic peak wind prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 579-594, November.
    2. Alejandro Ivan Aguirre-Salado & Carlos Arturo Aguirre-Salado & Ernesto Alvarado & Alicia Santiago-Santos & Guillermo Arturo Lancho-Romero, 2020. "On the Smoothing of the Generalized Extreme Value Distribution Parameters Using Penalized Maximum Likelihood: A Case Study on UVB Radiation Maxima in the Mexico City Metropolitan Area," Mathematics, MDPI, vol. 8(3), pages 1-17, March.
    3. Scheipl, Fabian, 2011. "spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i14).
    4. M. L. Stein, 2017. "Should annual maximum temperatures follow a generalized extreme value distribution?," Biometrika, Biometrika Trust, vol. 104(1), pages 1-16.
    5. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    6. E. M. Fischer & S. Sippel & R. Knutti, 2021. "Increasing probability of record-shattering climate extremes," Nature Climate Change, Nature, vol. 11(8), pages 689-695, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    2. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    3. Xin Fang & Bo Fang & Chunfang Wang & Tian Xia & Matteo Bottai & Fang Fang & Yang Cao, 2019. "Comparison of Frequentist and Bayesian Generalized Additive Models for Assessing the Association between Daily Exposure to Fine Particles and Respiratory Mortality: A Simulation Study," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    4. Vikki Thompson & Dann Mitchell & Gabriele C. Hegerl & Matthew Collins & Nicholas J. Leach & Julia M. Slingo, 2023. "The most at-risk regions in the world for high-impact heatwaves," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Sándor Baran & Patrícia Szokol & Marianna Szabó, 2021. "Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    6. Donatella Baiardi, 2021. "What do you think about climate change?," Working Papers 477, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
    7. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Daniela Castro‐Camilo & Raphaël Huser & Håvard Rue, 2022. "Practical strategies for generalized extreme value‐based regression models for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    9. Guoyong Leng & Qiuhong Tang & Shengzhi Huang & Xuejun Zhang, 2016. "Extreme hot summers in China in the CMIP5 climate models," Climatic Change, Springer, vol. 135(3), pages 669-681, April.
    10. Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
    11. Gloria Buriticá & Philippe Naveau, 2023. "Stable sums to infer high return levels of multivariate rainfall time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
    12. Conrad Wasko & Rory Nathan, 2019. "The local dependency of precipitation on historical changes in temperature," Climatic Change, Springer, vol. 156(1), pages 105-120, September.
    13. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    15. Benjamin Heuclin & Frédéric Mortier & Catherine Trottier & Marie Denis, 2021. "Bayesian varying coefficient model with selection: An application to functional mapping," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 24-50, January.
    16. Hong Ying & Hongyan Zhang & Ying Sun & Jianjun Zhao & Zhengxiang Zhang & Xiaoyi Guo & Hang Zhao & Rihan Wu & Guorong Deng, 2020. "CMIP5-Based Spatiotemporal Changes of Extreme Temperature Events during 2021–2100 in Mainland China," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    17. Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    18. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    19. Luminda Niroshana Gunawardhana & Ghazi A. Al-Rawas & Ghadeer Al-Hadhrami, 2018. "Quantification of the changes in intensity and frequency of hourly extreme rainfall attributed climate change in Oman," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1649-1664, July.
    20. Taillardat, Maxime & Fougères, Anne-Laure & Naveau, Philippe & de Fondeville, Raphaël, 2023. "Evaluating probabilistic forecasts of extremes using continuous ranked probability score distributions," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1448-1459.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:759-:d:1055427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.