IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp1408-1414.html
   My bibliography  Save this article

DCCA analysis of renewable and conventional energy prices

Author

Listed:
  • Paiva, Aureliano Sancho Souza
  • Rivera-Castro, Miguel Angel
  • Andrade, Roberto Fernandes Silva

Abstract

Here we investigate the inter-influence of oil prices and renewable energy sources. The non-stationary time series are scrutinized within the Detrended Cross-Correlation Analysis (DCCA) framework, where the resulting DCCA coefficient provides a useful and reliable index to the evaluate the cross correlation between events at the same time instant as well as at a suitably chosen time lags. The analysis is based on the quotient of two successive daily closing oil prices and composite indices of renewable energy sources in USA and Europe in the period 2006–2015, which was subject to several social and economic driving forces, as the increase of social pressure in favor of the use of non-fossil energy sources and the worldwide economic crisis that started in 2008. The DCCA coefficient is evaluated for different window sizes, extracting information for short and long term correlation between the indices. Particularly, strong correlation between the behavior of the two distinct economic sectors are observed for large time intervals during the worst period of the economic crisis (2008–2012), hinting at a very cautious behavior of the economic agents. Before and after this period, the behavior of two economic sectors are overwhelmingly uncorrelated or very weakly correlated. The results reported here may be useful to select proper strategies in future similar scenarios.

Suggested Citation

  • Paiva, Aureliano Sancho Souza & Rivera-Castro, Miguel Angel & Andrade, Roberto Fernandes Silva, 2018. "DCCA analysis of renewable and conventional energy prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1408-1414.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1408-1414
    DOI: 10.1016/j.physa.2017.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307872
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marinho, E.B.S. & Sousa, A.M.Y.R. & Andrade, R.F.S., 2013. "Using Detrended Cross-Correlation Analysis in geophysical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2195-2201.
    2. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    3. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    4. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    5. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    6. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    7. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    8. Vassoler, R.T. & Zebende, G.F., 2012. "DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2438-2443.
    9. Hussain, Muntazir & Zebende, Gilney Figueira & Bashir, Usman & Donghong, Ding, 2017. "Oil price and exchange rate co-movements in Asian countries: Detrended cross-correlation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 338-346.
    10. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    11. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    12. Reboredo, Juan C., 2013. "Modeling EU allowances and oil market interdependence. Implications for portfolio management," Energy Economics, Elsevier, vol. 36(C), pages 471-480.
    13. Reboredo, Juan Carlos & Rivera-Castro, Miguel A. & Zebende, Gilney F., 2014. "Oil and US dollar exchange rate dependence: A detrended cross-correlation approach," Energy Economics, Elsevier, vol. 42(C), pages 132-139.
    14. Cadoret, Isabelle & Padovano, Fabio, 2016. "The political drivers of renewable energies policies," Energy Economics, Elsevier, vol. 56(C), pages 261-269.
    15. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    16. Xi-Yuan Qian & Ya-Min Liu & Zhi-Qiang Jiang & Boris Podobnik & Wei-Xing Zhou & H. Eugene Stanley, 2015. "Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces," Papers 1504.02435, arXiv.org, revised Apr 2015.
    17. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    18. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    2. Nascimento Filho, A.S. & Pereira, E.J.A.L. & Ferreira, Paulo & Murari, T.B. & Moret, M.A., 2018. "Cross-correlation analysis on Brazilian gasoline retail market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 550-557.
    3. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    4. Jiang, Yonghong & Wang, Jieru & Lie, Jiayi & Mo, Bin, 2021. "Dynamic dependence nexus and causality of the renewable energy stock markets on the fossil energy markets," Energy, Elsevier, vol. 233(C).
    5. Wang, Qizhen, 2019. "Multifractal characterization of air polluted time series in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 167-180.
    6. Dan Nie & Yanbin Li & Xiyu Li & Xuejiao Zhou & Feng Zhang, 2022. "The Dynamic Spillover between Renewable Energy, Crude Oil and Carbon Market: New Evidence from Time and Frequency Domains," Energies, MDPI, vol. 15(11), pages 1-28, May.
    7. Suleiman Saleh & Chang-Hyun Sohn, 2024. "Numerically Investigating the Energy-Harvesting Performance of an Oscillating Flat Plate with Leading and Trailing Flaps," Energies, MDPI, vol. 17(12), pages 1-19, June.
    8. Razavi Dehkordi, Mohammad Hossein & Soltani, Mohammad Reza & Davari, Ali Reza, 2019. "Statistical analysis on the effect of reduced frequency on the aerodynamic behavior of an airfoil in dynamic physical motions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    10. Suleiman Saleh & Chang-Hyun Sohn, 2024. "Power Extraction Performance by a Hybrid Non-Sinusoidal Pitching Motion of an Oscillating Energy Harvester," Energies, MDPI, vol. 17(11), pages 1-17, May.
    11. Hammoudeh, Shawkat & Mokni, Khaled & Ben-Salha, Ousama & Ajmi, Ahdi Noomen, 2021. "Distributional predictability between oil prices and renewable energy stocks: Is there a role for the COVID-19 pandemic?," Energy Economics, Elsevier, vol. 103(C).
    12. Inacio, C.M.C. & Kristoufek, L. & David, S.A., 2023. "Assessing the impact of the Russia–Ukraine war on energy prices: A dynamic cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    13. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    14. Tareq Saeed & Elie Bouri & Dang Khoa Tran, 2020. "Hedging Strategies of Green Assets against Dirty Energy Assets," Energies, MDPI, vol. 13(12), pages 1-17, June.
    15. Fang, Guochang & Lu, Longxi & Tian, Lixin & he, Yu & Yin, Huibo, 2020. "Research on the influence mechanism of carbon trading on new energy—A case study of ESER system for China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Zhou, Hanchu & Chang, Fangrong, 2022. "The long-memory temporal dependence of traffic crash fatality for different types of road users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Xiaohui Zhao, 2020. "Do the stock returns of clean energy corporations respond to oil price shocks and policy uncertainty?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-16, December.
    18. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    19. Xiang, Shihui & Cao, Yanyan, 2023. "Green finance and natural resources commodities prices: Evidence from COVID-19 period," Resources Policy, Elsevier, vol. 80(C).
    20. Maneejuk, Paravee & Kaewtathip, Nuttaphong & Yamaka, Woraphon, 2024. "The influence of the Ukraine-Russia conflict on renewable and fossil energy price cycles," Energy Economics, Elsevier, vol. 129(C).
    21. Derick David Quintino & Heloisa Lee Burnquist & Paulo Jorge Silveira Ferreira, 2021. "Carbon Emissions and Brazilian Ethanol Prices: Are They Correlated? An Econophysics Study," Sustainability, MDPI, vol. 13(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    2. Ferreira, Paulo & Loures, Luís & Nunes, José & Brito, Paulo, 2018. "Are renewable energy stocks a possibility to diversify portfolios considering an environmentally friendly approach? The view of DCCA correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 675-681.
    3. Ferreira, Paulo & Pereira, Éder Johson de Area Leão & Silva, Marcus Fernandes da & Pereira, Hernane Borges, 2019. "Detrended correlation coefficients between oil and stock markets: The effect of the 2008 crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 86-96.
    4. Thiago Pires Santana & Nicole Horta & Catarina Revez & Rui Manuel Teixeira Santos Dias & Gilney Figueira Zebende, 2023. "Effects of Interdependence and Contagion on Crude Oil and Precious Metals According to ρ DCCA : A COVID-19 Case Study," Sustainability, MDPI, vol. 15(5), pages 1-12, February.
    5. Shen, Chenhua, 2017. "A comparison of principal components using TPCA and nonstationary principal component analysis on daily air-pollutant concentration series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 453-464.
    6. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    7. Ghazani, Majid Mirzaee & Khosravi, Reza, 2020. "Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Zebende, G.F. & Brito, A.A. & Castro, A.P., 2020. "DCCA cross-correlation analysis in time-series with removed parts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    9. Shen, Chenhua, 2019. "The influence of a scaling exponent on ρDCCA: A spatial cross-correlation pattern of precipitation records over eastern China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 579-590.
    10. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    11. Guedes, E.F. & Brito, A.A. & Oliveira Filho, F.M. & Fernandez, B.F. & de Castro, A.P.N. & da Silva Filho, A.M. & Zebende, G.F., 2018. "Statistical test for ΔρDCCA cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 134-140.
    12. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    13. Nascimento Filho, A.S. & Pereira, E.J.A.L. & Ferreira, Paulo & Murari, T.B. & Moret, M.A., 2018. "Cross-correlation analysis on Brazilian gasoline retail market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 550-557.
    14. Paulo Ferreira & Luís Carlos Loures, 2020. "An Econophysics Study of the S&P Global Clean Energy Index," Sustainability, MDPI, vol. 12(2), pages 1-9, January.
    15. da Silva Filho, A.M. & Zebende, G.F. & de Castro, A.P.N. & Guedes, E.F., 2021. "Statistical test for Multiple Detrended Cross-Correlation Coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    16. Zhai, Lu-Sheng & Liu, Ruo-Yu, 2019. "Local detrended cross-correlation analysis for non-stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 222-233.
    17. Gargallo, Pilar & Lample, Luis & Miguel, Jesús A. & Salvador, Manuel, 2024. "Sequential management of energy and low-carbon portfolios," Research in International Business and Finance, Elsevier, vol. 69(C).
    18. Kristoufek, Ladislav, 2018. "Fractality in market risk structure: Dow Jones Industrial components case," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 69-75.
    19. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    20. da Silva, L.S. Almeida & Guedes, E.F. & Ferreira, Paulo & Dionísio, Andreia & Zebende, G.F., 2019. "ρx,y between open-close stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:1408-1414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.