IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.6857.html
   My bibliography  Save this paper

Finite sample properties of power-law cross-correlations estimators

Author

Listed:
  • Ladislav Kristoufek

Abstract

We study finite sample properties of estimators of power-law cross-correlations -- detrended cross-correlation analysis (DCCA), height cross-correlation analysis (HXA) and detrending moving-average cross-correlation analysis (DMCA) -- with a special focus on short-term memory bias as well as power-law coherency. Presented broad Monte Carlo simulation study focuses on different time series lengths, specific methods' parameter setting, and memory strength. We find that each method is best suited for different time series dynamics so that there is no clear winner between the three. The method selection should be then made based on observed dynamic properties of the analyzed series.

Suggested Citation

  • Ladislav Kristoufek, 2014. "Finite sample properties of power-law cross-correlations estimators," Papers 1409.6857, arXiv.org.
  • Handle: RePEc:arx:papers:1409.6857
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.6857
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    2. Kristoufek, Ladislav, 2013. "Mixed-correlated ARFIMA processes for power-law cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6484-6493.
    3. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    4. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    5. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    6. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    7. Zhi-Qiang Jiang & Wei-Xing Zhou, 2011. "Multifractal detrending moving average cross-correlation analysis," Papers 1103.2577, arXiv.org, revised Mar 2011.
    8. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    9. Kristoufek, Ladislav, 2015. "On the interplay between short and long term memory in the power-law cross-correlations setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 218-222.
    10. Grech, Dariusz & Mazur, Zygmunt, 2013. "On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2384-2397.
    11. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    12. Barabási, Albert-László & Szépfalusy, Péter & Vicsek, Tamás, 1991. "Multifractal spectra of multi-affine functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 178(1), pages 17-28.
    13. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.
    14. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    15. Marinho, E.B.S. & Sousa, A.M.Y.R. & Andrade, R.F.S., 2013. "Using Detrended Cross-Correlation Analysis in geophysical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2195-2201.
    16. Rebecca J. Sela & Clifford M. Hurvich, 2012. "The averaged periodogram estimator for a power law in coherency," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 340-363, March.
    17. Alvarez-Ramirez, Jose & Cisneros, Myriam & Ibarra-Valdez, Carlos & Soriano, Angel, 2002. "Multifractal Hurst analysis of crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(3), pages 651-670.
    18. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    19. Zebende, G.F. & da Silva, M.F. & Machado Filho, A., 2013. "DCCA cross-correlation coefficient differentiation: Theoretical and practical approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1756-1761.
    20. S. Shadkhoo & G. R. Jafari, 2009. "Multifractal detrended cross-correlation analysis of temporal and spatial seismic data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 72(4), pages 679-683, December.
    21. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    22. Ladislav Kristoufek, 2012. "Multifractal Height Cross-Correlation Analysis: A New Method for Analyzing Long-Range Cross-Correlations," Papers 1201.3473, arXiv.org, revised Jan 2012.
    23. Sergio Arianos & Anna Carbone, 2008. "Cross-correlation of long-range correlated series," Papers 0804.2064, arXiv.org, revised Mar 2009.
    24. Zebende, G.F., 2011. "DCCA cross-correlation coefficient: Quantifying level of cross-correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 614-618.
    25. Zebende, G.F. & Filho, A. Machado, 2009. "Cross-correlation between time series of vehicles and passengers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4863-4866.
    26. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    27. He, Ling-Yun & Chen, Shu-Peng, 2011. "Nonlinear bivariate dependency of price–volume relationships in agricultural commodity futures markets: A perspective from Multifractal Detrended Cross-Correlation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 297-308.
    28. Vassoler, R.T. & Zebende, G.F., 2012. "DCCA cross-correlation coefficient apply in time series of air temperature and air relative humidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2438-2443.
    29. Ladislav Krištoufek, 2010. "Rescaled Range Analysis and Detrended Fluctuation Analysis: Finite Sample Properties and Confidence Intervals," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 4(3), pages 315-329, November.
    30. Hajian, S. & Movahed, M. Sadegh, 2010. "Multifractal Detrended Cross-Correlation Analysis of sunspot numbers and river flow fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4942-4957.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ladislav Kristoufek, 2018. "Power-law cross-correlations: Issues, solutions and future challenges," Papers 1806.01616, arXiv.org.
    2. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladislav Kristoufek, 2016. "Power-law cross-correlations estimation under heavy tails," Papers 1602.05385, arXiv.org, revised Apr 2016.
    2. Kristoufek, Ladislav, 2014. "Measuring correlations between non-stationary series with DCCA coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 291-298.
    3. Ladislav Kristoufek, 2014. "Spectrum-based estimators of the bivariate Hurst exponent," Papers 1408.6637, arXiv.org, revised Nov 2014.
    4. Kristoufek, Ladislav, 2013. "Mixed-correlated ARFIMA processes for power-law cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6484-6493.
    5. repec:arx:papers:1501.02947 is not listed on IDEAS
    6. Machado Filho, A. & da Silva, M.F. & Zebende, G.F., 2014. "Autocorrelation and cross-correlation in time series of homicide and attempted homicide," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 12-19.
    7. Kristoufek, Ladislav, 2015. "Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded volume: Evidence from the Dow Jones Industrial components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 194-205.
    8. Kristoufek, Ladislav, 2015. "Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 124-127.
    9. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    10. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    11. Kristoufek, Ladislav, 2014. "Leverage effect in energy futures," Energy Economics, Elsevier, vol. 45(C), pages 1-9.
    12. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    13. Ladislav Kristoufek, 2013. "Testing power-law cross-correlations: Rescaled covariance test," Papers 1307.4727, arXiv.org, revised Aug 2013.
    14. Kristoufek, Ladislav, 2014. "Detrending moving-average cross-correlation coefficient: Measuring cross-correlations between non-stationary series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 169-175.
    15. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    16. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    17. Qin, Jing & Ge, Jintian & Lu, Xinsheng, 2018. "The effectiveness of the monetary policy in China: New evidence from long-range cross-correlation analysis and the components of multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1026-1037.
    18. Yuan, Naiming & Fu, Zuntao, 2014. "Different spatial cross-correlation patterns of temperature records over China: A DCCA study on different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 71-79.
    19. Chatterjee, Sucharita & Ghosh, Dipak, 2021. "Impact of Global Warming on SENSEX fluctuations — A study based on Multifractal detrended cross correlation analysis between the temperature anomalies and the SENSEX fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    20. Wang, Dong-Hua & Suo, Yuan-Yuan & Yu, Xiao-Wen & Lei, Man, 2013. "Price–volume cross-correlation analysis of CSI300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1172-1179.
    21. Chatterjee, Sucharita, 2020. "Analysis of the human gait rhythm in Neurodegenerative disease: A multifractal approach using Multifractal detrended cross correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.6857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.