IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp277-287.html
   My bibliography  Save this article

Modeling of knowledge transmission by considering the level of forgetfulness in complex networks

Author

Listed:
  • Cao, Bin
  • Han, Shui-hua
  • Jin, Zhen

Abstract

In this study, we establish a general model by considering the level of forgetfulness during knowledge transmission in complex networks, where the level of forgetfulness depends mainly on the number in a crowd who possess knowledge, while the saturated incidence is also considered. In theory, we analyze the stability of the equilibrium points and the transmission threshold R0 is also given. If R0>1, then knowledge can ​be transmitted, but if not, it will become completely extinct. In addition, we performed some numerical simulations to verify the reasonability of the theoretical analysis. The results of the simulations also suggest ​that the proportion of the crowd with knowledge will be increased under a better cultural atmosphere.

Suggested Citation

  • Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:277-287
    DOI: 10.1016/j.physa.2015.12.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000273
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    2. Kiss, Istvan Z. & Broom, Mark & Craze, Paul G. & Rafols, Ismael, 2010. "Can epidemic models describe the diffusion of topics across disciplines?," Journal of Informetrics, Elsevier, vol. 4(1), pages 74-82.
    3. J. Gu & W. Li & X. Cai, 2008. "The effect of the forget-remember mechanism on spreading," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(2), pages 247-255, March.
    4. Piergiuseppe Morone & Richard Taylor, 2004. "Knowledge diffusion dynamics and network properties of face-to-face interactions," Journal of Evolutionary Economics, Springer, vol. 14(3), pages 327-351, July.
    5. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.
    6. Holsapple, Clyde W. & Lee-Post, Anita, 2010. "Behavior-based analysis of knowledge dissemination channels in operations management," Omega, Elsevier, vol. 38(3-4), pages 167-178, June.
    7. Zhao, Laijun & Wang, Qin & Cheng, Jingjing & Chen, Yucheng & Wang, Jiajia & Huang, Wei, 2011. "Rumor spreading model with consideration of forgetting mechanism: A case of online blogging LiveJournal," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2619-2625.
    8. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    9. George P. Huber, 1991. "Organizational Learning: The Contributing Processes and the Literatures," Organization Science, INFORMS, vol. 2(1), pages 88-115, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    3. Zhu, Linhe & Liu, Mengxue & Li, Yimin, 2019. "The dynamics analysis of a rumor propagation model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 118-137.
    4. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    5. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    6. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    7. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Xiaodan Kong & Qi Xu & Tao Zhu, 2019. "Dynamic Evolution of Knowledge Sharing Behavior among Enterprises in the Cluster Innovation Network Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    9. Shuihua Han & Bin Cao & Yufang Fu & Zongwei Luo, 2018. "A liner shipping competitive model with consideration of service quality management," Annals of Operations Research, Springer, vol. 270(1), pages 155-177, November.
    10. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    12. Yufang Fu & Bin Cao & Wei Zhang & Zongwei Luo, 2022. "Information Spreading Considering Repeated Judgment with Non-Recursion," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    13. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    14. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    15. Mei, Jun & Wang, Sixin & Xia, Dan & Hu, Junhao, 2022. "Global stability and optimal control analysis of a knowledge transmission model in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    2. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    3. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    4. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Lan, Yuexin & Lian, Zhixuan & Zeng, Runxi & Zhu, Di & Xia, Yixue & Liu, Mo & Zhang, Peng, 2020. "A statistical model of the impact of online rumors on the information quantity of online public opinion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    7. Cui, Yapeng & Ni, Shunjiang & Shen, Shifei & Wang, Zhiru, 2020. "Modeling the dynamics of information dissemination under disaster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    8. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    9. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    10. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    11. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    12. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    14. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    15. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    16. Zan, Yongli & Wu, Jianliang & Li, Ping & Yu, Qinglin, 2014. "SICR rumor spreading model in complex networks: Counterattack and self-resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 159-170.
    17. Lorenzo Zirulia, 2023. "Path dependence in evolving R&D networks," Journal of Evolutionary Economics, Springer, vol. 33(1), pages 149-177, January.
    18. Widad Guechtouli, 2014. "Agent-based modeling of knowledge transfer within social networks," Working Papers 2014-148, Department of Research, Ipag Business School.
    19. Ivan Savin, 2021. "On optimal regimes of knowledge exchange: a model of recombinant growth and firm networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 497-527, July.
    20. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:277-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.