IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v559y2020ics0378437120305574.html
   My bibliography  Save this article

Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network

Author

Listed:
  • Huo, Liang’an
  • Chen, Sijing

Abstract

In the Internet age, rumors bring great panic, research on the mechanism of propagation will help mitigate the bad influence of rumors. In this paper, we propose a modified rumor propagation model with consideration of scientific knowledge level and social reinforcement, and derive the mean-field equations that describe the dynamics of rumor propagation process. We obtain the rumor propagation threshold, which is closely related to scientific knowledge level and social reinforcement. The threshold of rumor propagation is increased by the scientific knowledge level, and the critical threshold of scientific knowledge level is also affected by the rumor propagation probability The results show that rumor propagates more quickly and more widely in people without scientific knowledge, while rumor propagates more slowly and the final size of the rumor is smaller in people with scientific knowledge. Positive social reinforcement will reduce the propagation threshold of rumor propagation, increase the propagation rate, and finally increase the rumor scale. Negative social reinforcement has the opposite effect on rumor. These results are verified by numerical simulations on scale-free networks. Research results also provide a good reference for future studies on how to control rumor propagation.

Suggested Citation

  • Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
  • Handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305574
    DOI: 10.1016/j.physa.2020.125063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120305574
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    2. Liu, Xiongding & Li, Tao & Xu, Hao & Liu, Wenjin, 2019. "Spreading dynamics of an online social information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 497-510.
    3. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    4. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    5. Wang Jing & Li Min & Wang Ya-Qi & Zhou Zi-Chen & Zhang Li-Qiong, 2019. "The influence of oblivion-recall mechanism and loss-interest mechanism on the spread of rumors in complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 30(09), pages 1-21, September.
    6. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model considering the proportion of wisemen in the crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1084-1094.
    7. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    8. Zhu, Linhe & Zhou, Xiao & Li, Yimin, 2019. "Global dynamics analysis and control of a rumor spreading model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    9. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.
    10. Yang, Anzhi & Huang, Xianying & Cai, Xiumei & Zhu, Xiaofei & Lu, Ling, 2019. "ILSR rumor spreading model with degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    11. Afassinou, Komi, 2014. "Analysis of the impact of education rate on the rumor spreading mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 43-52.
    12. Li, Jiarong & Jiang, Haijun & Yu, Zhiyong & Hu, Cheng, 2019. "Dynamical analysis of rumor spreading model in homogeneous complex networks," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 374-385.
    13. Xu, Hao & Li, Tao & Liu, Xiongding & Liu, Wenjin & Dong, Jing, 2019. "Spreading dynamics of an online social rumor model with psychological factors on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 234-246.
    14. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    15. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    16. Kabir, K.M. Ariful & Kuga, Kazuki & Tanimoto, Jun, 2019. "Analysis of SIR epidemic model with information spreading of awareness," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 118-125.
    17. Nekovee, M. & Moreno, Y. & Bianconi, G. & Marsili, M., 2007. "Theory of rumour spreading in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 457-470.
    18. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Yanchao Liu & Pengzhou Zhang & Lei Shi & Junpeng Gong, 2023. "A Survey of Information Dissemination Model, Datasets, and Insight," Mathematics, MDPI, vol. 11(17), pages 1-30, August.
    3. Jing Chen & Nana Wei & Chen Xin & Mingxin Liu & Zeren Yu & Miaomiao Liu, 2022. "Anti-Rumor Dissemination Model Based on Heat Influence and Evolution Game," Mathematics, MDPI, vol. 10(21), pages 1-15, November.
    4. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    2. Shuzhen Yu & Zhiyong Yu & Haijun Jiang, 2022. "Stability, Hopf Bifurcation and Optimal Control of Multilingual Rumor-Spreading Model with Isolation Mechanism," Mathematics, MDPI, vol. 10(23), pages 1-29, December.
    3. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    4. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    5. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    6. Xia, Yang & Jiang, Haijun & Yu, Zhiyong, 2022. "Global dynamics of ILSR rumor spreading model with general nonlinear spreading rate in multi-lingual environment," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    7. Tian, Yong & Ding, Xuejun, 2019. "Rumor spreading model with considering debunking behavior in emergencies," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    8. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    9. Zhu, Hongmiao & Jin, Zhen & Yan, Xin, 2023. "A dynamics model of coupling transmission for multiple different knowledge in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    10. Zhang, Jing & Wang, Xiaoli & Xie, Yanxi & Wang, Meihua, 2022. "Research on multi-topic network public opinion propagation model with time delay in emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Ma, Jing & Zhu, He, 2018. "Rumor diffusion in heterogeneous networks by considering the individuals’ subjective judgment and diverse characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 276-287.
    14. Li, Dandan & Qian, Wenqi & Sun, Xiaoxiao & Han, Dun & Sun, Mei, 2023. "Rumor spreading in a dual-relationship network with diverse propagation abilities," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    15. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun & Li, Jiarong, 2021. "Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    18. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    19. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:559:y:2020:i:c:s0378437120305574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.