IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v458y2023ics0096300323004022.html
   My bibliography  Save this article

Rumor spreading in a dual-relationship network with diverse propagation abilities

Author

Listed:
  • Li, Dandan
  • Qian, Wenqi
  • Sun, Xiaoxiao
  • Han, Dun
  • Sun, Mei

Abstract

The increasing number of online ties created on social platforms has made our social relations and influences more complex and diverse. This paper proposes a multilayer-like network model for rumor spreading that incorporates both strong and weak relations. Two types of fixed topologies are used to describe strong relations, while the activity-driven model is employed for weak relations. The model also takes into consideration the differential propagation abilities of individuals. The rumor spreading thresholds are theoretically derived using mean-field theory and an approximation method, which are consistent with simulation results. Results indicate that differences in individuals’ strong relations significantly influence rumor spreading. Specifically, when the strong relation structure is a heterogeneous network, the density of rumor spreaders reaches equilibrium in a shorter time, and the final density of rumor spreaders is higher. However, when the strong relation structure is a homogeneous network and individuals’ activity rates are negatively correlated with their propagation abilities, rumor spreading is easier. Interestingly, the opposite result is obtained when the strong relation structure is a heterogeneous network. Additionally, individuals’ propagation abilities and weak relations can affect the final density of rumor spreaders, but the effects are not identical.

Suggested Citation

  • Li, Dandan & Qian, Wenqi & Sun, Xiaoxiao & Han, Dun & Sun, Mei, 2023. "Rumor spreading in a dual-relationship network with diverse propagation abilities," Applied Mathematics and Computation, Elsevier, vol. 458(C).
  • Handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004022
    DOI: 10.1016/j.amc.2023.128233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323004022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    2. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Liu, Wanping & Wu, Xiao & Yang, Wu & Zhu, Xiaofei & Zhong, Shouming, 2019. "Modeling cyber rumor spreading over mobile social networks: A compartment approach," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 214-229.
    4. Bodaghi, Amirhosein & Goliaei, Sama & Salehi, Mostafa, 2019. "The number of followings as an influential factor in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 167-184.
    5. Xu, Hao & Li, Tao & Liu, Xiongding & Liu, Wenjin & Dong, Jing, 2019. "Spreading dynamics of an online social rumor model with psychological factors on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 234-246.
    6. Tian, Yong & Ding, Xuejun, 2019. "Rumor spreading model with considering debunking behavior in emergencies," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    7. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    8. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Huo, Liang’an & Ding, Fan & Cheng, Yingying, 2019. "Dynamic analysis of a SIbInIu, rumor spreading model in complex social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 924-932.
    11. Yves Zenou, 2015. "A Dynamic Model of Weak and Strong Ties in the Labor Market," Journal of Labor Economics, University of Chicago Press, vol. 33(4), pages 891-932.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    3. Yin, Fulian & Jiang, Xinyi & Qian, Xiqing & Xia, Xinyu & Pan, Yanyan & Wu, Jianhong, 2022. "Modeling and quantifying the influence of rumor and counter-rumor on information propagation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Dong, Yafang & Huo, Liang'an & Zhao, Laijun, 2022. "An improved two-layer model for rumor propagation considering time delay and event-triggered impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2020. "Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    8. Marta Silva & José Garcia-Louzão, 2021. "Coworker Networks and the Labor Market Outcomes of Displaced Workers: Evidence from Portugal," Working Papers w202121, Banco de Portugal, Economics and Research Department.
    9. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2021. "Interplay between epidemic and information spreading on multiplex networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 268-279.
    10. Xuefeng Yue & Liangan Huo, 2022. "Analysis of the Stability and Optimal Control Strategy for an ISCR Rumor Propagation Model with Saturated Incidence and Time Delay on a Scale-Free Network," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    11. Zhang, Yaming & Su, Yanyuan & Weigang, Li & Liu, Haiou, 2019. "Interacting model of rumor propagation and behavior spreading in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 168-177.
    12. Liwen Chen & Bobby Chung & Guanghua Wang, 2022. "Stay-at-Home Peer Mothers and Gender Norms: Short-run Effects on Educational Outcomes," Working Papers 2022-039, Human Capital and Economic Opportunity Working Group.
    13. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    14. Bervoets, Sebastian & Zenou, Yves, 2017. "Intergenerational correlation and social interactions in education," European Economic Review, Elsevier, vol. 92(C), pages 13-30.
    15. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2017. "The Economic Consequences of Social-Network Structure," Journal of Economic Literature, American Economic Association, vol. 55(1), pages 49-95, March.
    17. Lian, Ying & Liu, Yijun & Dong, Xuefan, 2020. "Strategies for controlling false online information during natural disasters: The case of Typhoon Mangkhut in China," Technology in Society, Elsevier, vol. 62(C).
    18. Islam, Asad & Nguyen, Chau, 2018. "Do networks matter after a natural disaster? A study of resource sharing within an informal network after Cyclone Aila," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 249-268.
    19. Fathi Fakhfakh & Annick Vignes & Jihan Ghrairi, 2015. "Youth ! ... How did you find your job ?," Working Papers hal-01253907, HAL.
    20. Zhiling Wang & Thomas de Graaff & Peter Nijkamp, 2018. "Barriers of Culture, Networks, and Language in International Migration: A Review," REGION, European Regional Science Association, vol. 5, pages 73-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:458:y:2023:i:c:s0096300323004022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.