IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008876.html
   My bibliography  Save this article

Global stability and optimal control analysis of a knowledge transmission model in multilayer networks

Author

Listed:
  • Mei, Jun
  • Wang, Sixin
  • Xia, Dan
  • Hu, Junhao

Abstract

Knowledge dissemination plays an important role in many aspects. The control strategy to improve the performance of knowledge transmission in couple networks is a meaningful work, which is little consideration in the existing work. This paper addresses the problem of optimal control for a class of knowledge transmission models. Firstly, the multilayer complex networks are built according to how knowledge is acquired. Secondly, inspiration from the spread of a disease, a model of knowledge transmission is established. Moreover, the basic reproduction number R0, knowledge-free equilibrium (KFE), and knowledge endemic equilibrium (KEE), as well as their stability, are deduced. Then, the imposition of optimal control, including improving the digestion and absorption of knowledge contacts and increasing the review rate of knowledge-forgotten persons, can increase the number of knowledge communicators. Afterward, Pontryagin’s maximum principle is used to deal with the nonlinear optimal control problem. Finally, through numerical simulations, the stability of the equilibriums are confirmed, the effect of knowledge dissemination is the best and the range of the knowledge dissemination is widest when two control strategies are applied at the same time.

Suggested Citation

  • Mei, Jun & Wang, Sixin & Xia, Dan & Hu, Junhao, 2022. "Global stability and optimal control analysis of a knowledge transmission model in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008876
    DOI: 10.1016/j.chaos.2022.112708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    2. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    3. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    4. Farid, May & Noguchi, Lori, 2022. "Knowledge communities and policy influence in China," World Development, Elsevier, vol. 150(C).
    5. Cao, Bin & Han, Shui-hua & Jin, Zhen, 2016. "Modeling of knowledge transmission by considering the level of forgetfulness in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 277-287.
    6. Wang, Sheng-Fu & Hu, Lin & Nie, Lin-Fei, 2021. "Global dynamics and optimal control of an age-structure Malaria transmission model with vaccination and relapse," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    8. Qiao, Tong & Shan, Wei & Zhang, Mingli & Liu, Chen, 2019. "How to facilitate knowledge diffusion in complex networks: The roles of network structure, knowledge role distribution and selection rule," International Journal of Information Management, Elsevier, vol. 47(C), pages 152-167.
    9. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    11. Wang, Haiying & Wang, Jun & Ding, Liting & Wei, Wei, 2017. "Knowledge transmission model with consideration of self-learning mechanism in complex networks," Applied Mathematics and Computation, Elsevier, vol. 304(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Hongmiao & Jin, Zhen, 2023. "A dynamics model of knowledge dissemination in a WeChat Group from perspective of duplex networks," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    2. Wang, Sixin & Mei, Jun & Xia, Dan & Yang, Zhanying & Hu, Junhao, 2022. "Finite-time optimal feedback control mechanism for knowledge transmission in complex networks via model predictive control," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Wang, Haiying & Moore, Jack Murdoch & Small, Michael & Wang, Jun & Yang, Huijie & Gu, Changgui, 2022. "Epidemic dynamics on higher-dimensional small world networks," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    4. Zhu, He & Ma, Jing, 2018. "Knowledge diffusion in complex networks by considering time-varying information channels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 225-235.
    5. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analysis knowledge transmission process in complex networks by considering internalization mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    7. Wang, Haiying & Moore, Jack Murdoch & Wang, Jun & Small, Michael, 2021. "The distinct roles of initial transmission and retransmission in the persistence of knowledge in complex networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    8. Wang, Haiying & Wang, Jun & Small, Michael & Moore, Jack Murdoch, 2019. "Review mechanism promotes knowledge transmission in complex networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 113-125.
    9. Xiaodan Kong & Qi Xu & Tao Zhu, 2019. "Dynamic Evolution of Knowledge Sharing Behavior among Enterprises in the Cluster Innovation Network Based on Evolutionary Game Theory," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    10. Wang, Haiying & Wang, Jun & Small, Michael, 2018. "Knowledge transmission model with differing initial transmission and retransmission process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 478-488.
    11. Liao, Shi-Gen & Yi, Shu-Ping, 2021. "Modeling and analyzing knowledge transmission process considering free-riding behavior of knowledge acquisition: A waterborne disease approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    12. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    13. Lu, Jinfeng & Dimov, Dimo, 2023. "A system dynamics modelling of entrepreneurship and growth within firms," Journal of Business Venturing, Elsevier, vol. 38(3).
    14. Olunifesi Adekunle Suraj, 2016. "Managing Telecommunications for Development: An Analysis of Intellectual Capital in Nigerian Telecommunication Industry," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-30, March.
    15. Soufiane Mezzourh & Walid A Nakara, 2009. "Governance and innovation : A Knowledge-based approach [La gouvernance de l'innovation : une approche par la connaissance]," Post-Print halshs-01955966, HAL.
    16. M. Max Evans & Ilja Frissen & Anthony K. P. Wensley, 2018. "Organisational Information and Knowledge Sharing: Uncovering Mediating Effects of Perceived Trustworthiness Using the PROCESS Approach," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-29, March.
    17. Chris Kimble & José Braga Vasconcelos & Álvaro Rocha, 2016. "Competence management in knowledge intensive organizations using consensual knowledge and ontologies," Information Systems Frontiers, Springer, vol. 18(6), pages 1119-1130, December.
    18. Maurizio Zollo, 1998. "Strategies or Routines ? Knowledge Codification, Path-Dependence and the Evolution of Post-Acquisition Integration Practices in the U.S. Banking Industry," Center for Financial Institutions Working Papers 97-10, Wharton School Center for Financial Institutions, University of Pennsylvania.
    19. Duniesky Feitó Madrigal & Alejandro Mungaray Lagarda & Michelle Texis Flores, 2016. "Factors associated with learning management in Mexican micro-entrepreneurs," Estudios Gerenciales, Universidad Icesi, vol. 32(141), pages 381-386, December.
    20. David Vallat, 2015. "Une alternative au dualisme État-Marché : l’économie collaborative, questions pratiques et épistémologiques," Working Papers halshs-01249308, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.